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THE INTERACTION OP WAVES AND OIL SPILLS

Robert J. Stewart

ABSTRACT

The combined effects of interfacial elasticity and
multiple fluid layer geometries upon the first order
properties of surface waves are analyzed for application to
the oil spill problem. The technique of matched assymptotic
expansion is used in conjunction with a small amplitude
assumption regarding the wave height.

The theory of interfacial elasticity is briefly
reviewed, and critical parameters are identified.
Recommendations for further study of oil-water adsorption
and mixed monolayer elasticities are developed.

The second order mass transport properties are
discussed in light of the first order solutions. It is
concluded that the enormous potential of this system for
significant variation in the first order properties makes
further theoretical analysis highly dependent upon the
availability of suitable experimental data to direct the
theoretician.



ACKNOWLEDGEMENTS

I would like to thank Professor Jerome H. Milgram and

John W. Devanney, III for the help they provided me in the

course of writing this dissertation. I took particular

pleasure in my conversations with Professor Milgram. His

candor and willingness to consider new and different problems

are especially appreciated. Professor Devanney found the

financial resources that allowed me to pursue this particular

topic. He was a constant source of encouragement and moral

support. Professor Ole Madsen was the third member on my

committee and I appreciated my several conversations with him.

This project was funded in part by the National Sea Grant

Program, National Oceanic and Atmospheric Administration, U.S.

Department of Commerce, through Institutional Grant 04-5-158-1

and by the Massachusetts Institute of Technology.

I would also like to thank Miss Cheryl Gibson, Mrs. Debbie

Schmitt and Mrs. Donna Fong all of whom helped prepare the

final manuscript. On the same topic, Mr. James Grayson of the

MIT Sea Grant Office helped arrange for the manuscript prepar-

ation for which I am grateful.

Finally, I would like to thank Professor Ira Dyer and

Professor Devanney for the encouragement they provided

me over the last several years.



TABLE OF CONTENTS

PacCe

TITLE PAGE

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

l. INTRODUCTION

2. INTERFACIAL PROPERTIES

3. GENERAL PROPERTIES OF UNCONSTRAINED OIL SPILLS
ON THE OCEAN 48

63

5 ~ BOUNDARY CONDITIONS AND MATCHING TECHNIQUES FOR
THE MONOLAYER PROBLEM

6. FIRST ORDER PROPERTIES FOR THE MONOLAYER PROBLEM

7. FIRST ORDER PROPERTIES OF THIN OIL LAYERS

8. SECOND ORDER STOKES BOUNDARY LAYER FLOW

9. APPLICATIONS, RECOMMENDATIONS FOR FURTHER STUDY
AND CONCLUSIONS

REFERENCES

APPENDICES

78

90

108

154

186

190

193

4 ~ EXPANSION, LINEARIZATION, AND NON-DIMENSIONALIZATION
OF THE GOVERNING EQUATIONS



LIST OF FIGURES

P~ae

24

30

52

54

3.3 No. 4 Fuel Oil Spill 30 Minutes After Release. . . . 57

4.1 Coordinate System. . . . . . . . . . . . . . . . . . 65

4.2 Non-Dimensionalized Coordinates . . . . . . . . . . 68

6.1 Spatial and Temporal Decay Coefficients as
Functions of the Nondimensional Elasticity
Parameter. . . ~ ~ . . . . . ~ . . . . . . . . . . . 104

6.2 Response Function Characteristics. . . . . . . . . . 106

7.1 Non-Dimensional Coordinates for The Oil Layer
Problem. . . . . . . . . . . . . . . . . . . . . . . 112

7 ' 2 Variation of ~ With Frequency for Three
s

Generic Oils . . . . . . . . - - . . - . 138

7.3 Decay Lengths for Three Generic Oils Assuming
Spill is "Thick" and Damping is by Thickness
0 nly..................... 140

2.1 Free Body Diagram for Elastic Interface
Dynamic Boundary Condition

2.2 Captured Monolayer Problem

2.3 Sketch of Surface Tension and Molecular Area
as Functions of Location in Captured Film.

2.4 Summary of Aveyards' Results for Adsorption
of n-Dodecanol

3.1 Growth of the Inner  Thick! Region with Time
 from Hollinger, 1974, Fig. 29, p. 62!

3.2 Area Versus Time for No. 2 Fuel Oil Spills

19

21



Parcae

142

144

l53

7.4 Decay Length as a Function of Frequency.

7.5 I  Kl! Versus Non-Dimensional Spill Thickness
m

for Fixed M

7. 6 I  Kl! Versus Spill Thickness for Three
m

Elasticities.

7.7 Thickness of Oil Layer

7.8 Decay Length and Wavelength as a Function of
Frequency for a "Thick" Layer of Medium Oil.

146

~ l50



l. INTRODUCTION

A number of authors have speculated upon the

possible importance of the interaction of waves and oil

spills in determining the transport of oil on the surface

of the ocean. Unfortunately, the oil-water system has

not been the subject of a reasonably specialized analysis,

with the result that speculations in the past have hinged

upon theoretical results that were strictly applicable

only to fairly coarse idealizations of the oil-water

system. The commonly invoked classical analyses either

ignored the particular visco-elastic behavior of the

oil-water interface, or else they so idealized the

interfacial phenomena as to cast doubt upon the generality

of the solution. This paper examines the oil-water

system and lays the necessary groundwork so that we can

consider the interaction of waves and. oil films without

recourse to idealizations whose physical significance is

unclear. The method of matched assymptotic expansions

is used because of the clarity offered by this technique

in elucidating the various physical scales and their

contribution to the overall problem.



Since the intended use of this analysis is to

shed light upon the transport of oil spills upon the

open ocean, the range of physical parameters is selected

to coincide with our knowledge of unconstrained oil

spills on the sea. For example, we know that the

thickness of the oil is typically so small the irrotational

modes within the oil can be neglected. Further, the

water depth is presumed to be infinite. These restrictions

are not necessary from the standpoint of the application

of the solution technique, but they do simplify the

analysis to an important degree.

Two often referred to classical analyses are

those of Harrison �908 a,b! and Dorrestein �951 a,b!.

Harrison's analysis treats the case of two superposed

viscous liquids of infinite extent with no surface

tension  a!, and one viscous liquid occupying the lower

half plane with surface tension  b!. From our standpoint,

the most important results obtained by Harrison are

those of paper  a!, particularly the viscosity induced

changes in the frequency parameter. Dorrestein's papers

�la! and �lb! are an amplification of same previous

studies by Lamb �2! The focus of these studies is

the effect of visco-elastic surface film behavior on

free surface waves assuming that the overlying fluid is



of negligible density. The analytical technique is the

sane as Harrison's the difference lying in the

formulation of the tangential stress condition and the

neglect of the upper fluid. Dorrestein's results are

important because they show explicity the importance

of the elasticity parameter. The reader is cautioned,

however, that Dorrestein mistakenly identified the

dilational viscosity with the more commonly measured

monolayer surface shear viscocity. Thus his estimates

of the possible importance of this parameter in the

two-dimensional wave problem are not to be trusted.

There are several recent examples of the use

of matched asymptotic expansions in viscous fluid surface

wave problems, the one most nearly like that used here

being the work of Johns �8!. The idea behind this

technique is that the flow may be considered to be

irrotational over the bulk of the region of interest,

with the exception of the areas lying near fluid interfaces

or along solid surfaces. Xn the irrotational regions,

the fluid velocities may be related to a potential

function satisfying Lap].ace's equation. However, in the

boundary layers lying near fluid interfaces and along

solid surfaces, regions of strong rotational flow are

established, and in such regions the velocities are related
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to a stream function. Xf we steady the problem through

a suitable selection of coordinate translation and wave

generator mechanism, then we can see that the boundaries

of the region in question conform to the sub-characteristics

formed by the outer irrotational solution, so we know

from Cole's discussions  l968, pages 120-162! that the

appropriate non-dimensional inner variable is related to

the reciprocal of the square root of the Reynolds number.

The two solutions are then formally joined in a region

of overlap.

Our analysis for two superposed fluids differs

slightly from Johns' in that we make use of an asymptotic

power series expansion that explicitly incorporates both

upper and lower inner expansion parameters. This has

the effect of making some of the kinematic conditions

explicit, where previous investigations such as Dore �0!

had to rely upon order of magnitude arguments to discard

unwanted terms.

Neglecting the possible influence of wave height

upon the dynamic interactions, the oil-on-water problem

is solved for the small amplitude case. Letting e be a

characteristic non-dimensional boundary layer depth, and m

be a characteristic non-dimensional wave amplitude, the



condition investigated is characterized by r » a. This

condition allows us to use cartesian coordinates and the

analysis follows Johns.

The analysis is primarily concerned with an

examination of the oil layer related perturbations to

the first order properties of surface waves. Particular

attention is paid to the wave number perturbation and the

characteristics of the velocity field in the vicinity

of the interface.

The second order analysis is much more uncertain

due to both an absence of suitable field observations

and uncertainties regarding the proper ordering

technique. Some implications of the strong damping of

surface waves on the second order boundary condition are

developed, but more remains to be done. The conditions

under which the second order flow might be amenable to

~ie«r-Hopf solution are documented and the possible

implications with respect to mass transport are discussed.



2. INTER7ACQLX PROPERTIES

The most important departure of this paper from

the previous studies of surface waves using the matched

asymptotic technique is the inclusion of the dynamic

properties of zonolayers at the interface of the two fluids.

The known behavior of various organic compounds at an oil-

water interface makes this modification imperative in any

general theory of oil spill behavior. However, so little

is known of the properties of oil spills under oceanic

conditions that large uncertainties exist as to the

appropriate range of values to be used in specifying the

monolayer parameters. The following is a brief survey

of the subject of monolayer behavior. For a more thorough

review of the hydrodynamic aspects of the problem the

reader is referred to Levich �962! Chapters VII and XI

 particular3.y sections 69, 121 and. 122!. The absorption

problem is nicely reviewed by E. H. Lucassen � Reynders

in Pro ress in. Surface and Membrane Science, Vol. 10

 edited by Candenhead and Danielli, 1976!; and the text

by Davies and Rideal �963! should serve as a good

introduction to the general subject of interfacial

phenomena, although the reader is cautioned that the
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organisation of the hook is more suited to directed. study

programs than quick reference.

The classical studies of monolayers and surface

elasticity in general began with measurements of the

variation of the surface tension of mixtures of water and

various organic compounds. Xn the course of these

experiments, it was observed that when a surface active

compound such as cetyl alcohol was spread upon the air-

water interface, the surface tension of the system dropped.

When the surfactant molecules covered only a small

percentage of the surface, the change in surface tension

was very small. As more and more of the substance was

added, the deviation from the uncontaminated. state grew

until it reached a final value, at which point the entire

surface was  apparently} covered with a layer of these

molecules. Xt was observed that the nature of the surface

tension's dependence upon the surface concentration of the

surfactant was highly variable, influenced strongly by

the molecular characteristics of the surfactants.

Following Davies and Rideal �963!, we may

consider films composed of pure compounds of low to

intermediate molecular weight to be either "gaseous",

"liquid expended", or "condensed" according to the



behavior of the surface tension with variations in surface

concentration. Letting, A he the surface area available

to a molecule  in Angstroms squared conventionally, i.e.,

-8 2
�0 cm! !* and m be the difference between the

uncontaminated and contaminated surface tensjons  j.e.,

= T A=~! - T A! ! then gaseous and liquid expanded films

tend to obey the following equation=

�. 1!

 Davies and Rideal, equations 5.1 and 5.2!

where
for gaseous films:

>0 ~dnes
S cm02 for liquid expanded films;

A ~ 20A
0

Z = Boltzman's constant; and,

T = Temperature   K!.
o

Condensed. films do not show this gradual

variation in vr with A; rather, the intermolecular

*Use is made in some recent papers of the nanometer
squared unit which is �0 7 cm!



cohesive forces tend to be so high that at low surface

concentrations the surfactant organizes itself into small

"islands", and these islands do not materially affect

the surface tension of the system. lt is only as the

coverage of the surface approaches l00% that these islands

come to form a reasonably contiguous film, whereupon the

surface pressure vr, grows rapidly. Liquid expanded films

also form islands at low conentrations, but sufficient

numbers of molecules exist in a free gaseous state to

affect the surface tension even at low concentrations.

Large molecules, proteins and so on, tend. to

obey equations of the form:

KT

A A
0!

A

X-l 2A
0

� Zn l

2, zA
�. 2}

 Davies and Rideal, equation 5. l4!

where X is the degree of polymerization  a parameter related

to the number of like molecular groups forming the polymer!;

and z is the coordination number, which reflects the degree

of unfolding of the molecule on the surface. The parameter

z has a value of around 2 for molecules that remains highly
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coiled, while for molecules that relax into long randomly

organized chains, z is nearly 4.

The primary difference between oil-water and

air-water interfacial manolayers is that films composed

of the same surfactant tend to exhibit higher pressures

on the oil-water interface than on the air-water interface.

This is caused by the similarity between the molecules

of the bulk phase of the oil and the long hydrocarbon

chains of the surfactant. The molecules from the bulk

phase interject themselves between the surfactant molecules

and this tends to reduce the cohesive forces between

surfactant molecules, allowing them to exert a greater

pressure on the surface.

The usual wave problem involves periodic

oscillations of the interface of two pure and mutually

immiscible substances. Xn the course of one oscillation,

the local surface area will alternately expand and

contract, and in so doing, it will acquire and release

potential energy. During the portion of the oscillation

in which the surface is being stretched, kinetic energy

will be converted into the energy required to form the

additional surface. During the contraction phase of the

motion, the surface will be diminished  locally!, releasing
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potential energy to be converted to kinetic energy. A

key feature of this process is that the composition of the

interface will not change  locally or globally] during

the oscillation. The molecules that are drawn from the

bulk phase to create the new area are identical to those

already at the surface. Thus the energy required to create

additional surface remains proportional to the incremental

area formed.

The wave problem we consider in this paper

differs from the problem above in that the interface is

presumed to contain not only zolecules from the pure bulk

phases, but also a number of surfactants that change the

local surface tension according to the  local!

concentration of these compounds. If all the surfactants

are stuck at the interface  i.e., they are immiscible

in either of the bulk phases!, then as the interface

stretches, the local concentration will decline, increasing

the area available per molecule, and, according to either

equation 2.l or 2.2, the local pressure will decrease.

This corresponds to an increase in the local surface

tension, which implies that the energy required to Eorm

the new surface is greater than that required to from

an equivalent incremental area in the pure fluids problem.
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In the wave problem we consider here, the

surface oscillations are presumed to be small and so the

stretching motions are also small. Further, the

variation in the surface tension associated with the

stretching of the surface is assumed to be moderate.

Thus, the additional energy required to form new surface

when we consider the combined stretching and surface

tension variation is small compared to the energy required

to form the additional area at the average surface tension

value. Therefore this is not the source of the differences

between our present problem and the more familiar surface

tension problem.

The important difference springs from the effect.

of local variations in surface tension upon the tangential

stress applied to the free surface. This can best be

seen with the free body diagram of Figure 2.1. Here we

consider a small element of the lower fluid adjacent to

the interface. The monolayer region is depicted as the

thin sheet at the interface. In actual fluids, the

thickness of this region is of molecular dimensions, say
0

100 A �0 cm!, at most, and so the mass of this region

is negligible. We also choose the other dimensions in

the fluid element to be so small that the element as a
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NORf%L FORCE:

[0 -cr ]ds � Tocsin [6,-6~] � T2sin [6,-6>] = 0u

TANGENTIAL FORCE:

[a -a ]ds � T cos [8 -8 ] + T cos [8 -8 ] = 0u g,
sn sn 1 1 2 2 2 3

dt dsT =To
ds 2

dt ds
T2 To ds 2

de ds

ds 2

U
~nn

U
� ~ ~sn

T2
o'nn

g dT
sn ds

and

FIGlJRE 2.1

FREE BODY DIAGRAM FOR

ELASTIC INTERFACE DYNAMIC BOUNDARY CONDITION

U g de
nn nn o ds

e -e

6 � 8
de ds

ds 2
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a � o = Tu dB

nn nn �. 3!

u dT

sn sn ds

a is the stress component acting normally
nn

where

to the local surface in fluid 8  g=u,R!;

0 is the stress component acting tangentially
sn

to the surface in fluid

T is the local value of the surface

tension; and

d6
is the local radius of curvature.

ds

These equations are perfectly general. Their meaning can

best be appreciated with a simple example. Consider a

small barrier moving steadily across the surface of the

water, as depicted in Figure 2.2. Assume that the

barrier just touches the surface, and that immiscible

whole is essentially without mass. Under these conditions

the sum of the stresses applied to the surfaces of the

element must be zero. Letting ds be the length of the

surface element, we find that correct to O ds!:



Barrier Moving to Right

CAPTURED NONOLAYER PROBLEM
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sur factants have collected in front of the barrier.

Neglect variations in the 'z' direction. If the problem

is in a steady state then the velocity everywhere within

the surface film must be zero relative to the barrier.

Relative to the barrier, the water will appear to be

streaming from right to left, and if we neglect the normal

stress boundary condition, the problem will look very

much like a flat plate moving to the right. on the surface

of the water. In this case, the tangential stress is

known to vary with x according to the following formula

 see for example Schlichting �8! equation �.32!!:

o = pu'  .332! �. 5!

Equating this with d  which is now d ! in equation 2.4,d.T ~ ~ dT
ds dx

and integrating, we find the following formula for the

variation in surface tension over the captured surface

film;

T  x! = T � 2pu  . 332!
0 0

�. 6!

If the film is of the gaseous type  for example! then

we can equate the local surface tension with the local
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molecular area, whence:

�. 7!A  x}
2pu  .332}

Since the maximum drop in surface tension is not

infinite, but is, in fact, determined by the substance

chosen for the surfactant, the formula will only hold for

ranges of velocities and lengths. In fact, the drop in

surface tension or alternatively, the total surface

pressure, must equal exactly the total force,  i.e., the

stress integrated over the area!, applied by the water,

thus-

2pu  , 332 �. 8!

where vr is the maximum surface pressure observed for a
max

tightly packed layer of the surfactant. Figure 2.3 shows

the variation with x of T and A, for this problem.

If the total stress applied to the film exceeds

x , then the film will contract, falling back on themax'

barrier. Immediately in front of the barrier a zone of

bulk phase surfactant will form, and, assuming the

surfactant to be in the liquid state, internal gravity

induced flows will develop so as to balance the stress
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applied by the water below.

If we were to consider the normal stress boundary

condition then things get more complicated. Preliminary

laboratory observations suggest the formation of a sharp

cusp at the leading edge stagnation point. The cusp

appears to have a very small radius of curvature, suggesting

T d is sufficient to balance the stagnation pressure ind0

ds

this region.

While I am unfamiliar with any laboratory studies

that would verify the analysis and calculations made for

the example discussed above, Vines �9! performed a

somewhat. analogous calculation and experiment. In his

study, wind was blown across a trough of water covered

with a monolayer. The wind boundary layer was well

established, exerting a nearly constant stress every

where on the water's surface. Vines found that the film

pressure measured at the rear  leeward! edge of the film

varied linearly with the distance between the film balance

 an apparatus designed. to measure film pressure! and the

forward  windward} edge of the monolayer. The upwind

edge was identified by talc powder sprinkled on the

water's surface which was convected by the water's motion

to the stagnation point at the beginning of the film.
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There the talc accumulated in a visible line. Since

the integrated stress  the total force! varied linearly

with the length of the film  on account of the constancy

of applied stress with respect to location}, this

observation is in accord with our discussion of the problem

and the calculations that led to equation �.8!.

While this example and the proceeding one are

rather simple, they serve as useful points of departure

for a general discussion of the complexities of the wave

problem. A key assumption in the calculation leading

to equation �. 8! is that a steady state was achieved.

In an actual problem, this may only be approximately

true, and then only for highly insoluble surfactants.

To the extent that the surfactants are soluble, a small

fraction will constantly be washed from the monolayer

by the water streaming past. If the water does not

supply an equal amount of surfactants by convection

from an upstream source, then eventually the material

in the film will be totally extracted. If the water is

recirculated, then at some point a balance will be

reached, but the distribution of surfactant between the

bulk phase, the captured film, and adsorption on other

surfaces will be a complicated function of the geometry of



-27-

the apparatus and the physical properties of the

surfactant.

An oil spill moving with respect to the ocean

may never reach a steady state due to the extraction of

the surfactants orginally in the spill. To the extent

that the oil's surfactants are replaced. by naturally

occurring surfactants, a steady state may be obtained,

but it is likely that the amount of naturally occurring

surfactant is rather small  that surfactants are found

under natural conditions at sea is not to be disputed,

see Barger and Garrett �0!!. Of course, the idea of

'steady' is a relative one and so if the time scales

we are concerned with are wave periods on the order of

seconds or less, then the film need be of reasonably

constant properties only over periods of minutes for

the system to appear 'steady' to the wave oscillations.

Some general idea of the time scale of this

extractive process may be obtained from Davies and Rideal

wherein they reported  see page 181! fractional loss rates
-1 -5 -1

of 5. 2 x 10 sec for C9F19CQO and 1. 6 x 10 sec

for C18H3pC  CH3! 3 from the air-water interface. These

correspond to characteristic extraction times on the order

of hours to days respectively. Thus even for some of the



more slowly occurring hydrodynamic processes, a steady

state approximation may be useful.

However, in addition to these slow transient

phenomena, there are for surfactants soluble in one or

both of the adjoining phases, fast occurring exchanges

of molecules between the adjoining bulk phases and

the interface. These exchanges can effect the dynamical

properties of a film. This is a phenomena that. has long

been recognized, but little experimental data are

available to allow us to come to grips with the problem.

The branch of surface chemistry that concerns itself

with determining some of the key parameters for this

process falls under the general heading of distribution

studies. It is the goal of such studies to determine

where the surfactant resides in a multiple fluid system.

In an oil-water system, such a study would presumably

determine both the equilibrium concentrations of surfactants

in the oil and water respectively, and the surface

concentration of molecules at the interface. Unfortunately,

there is remarkably little information available on the

subject. So little, in fact, that most of the recent

papers on the subject begin with words to the effect that

adsorption at, liquid/liquid interface has received little
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attention  see for example, Aveyard et al �2}, Aveyard

et al �0! and Chatterjee et al �8} } .

The importance of this subject can best be

appreciated by application of the results of one of these

papers to a hypothetical problem. Aveyard, Briscoe and

Chapman �2! recently examined the adsorption of

n-dodecanol on the interface between n-octane and water.

Through direct measurements and theoretical extrapolations,

they determined:

1. The interfacial tension as a function

of the mole fraction of n-dodecanol

 dissolved! in the n-octane;

2 ~ The surface areas of the n-dodecanol

molecules adsorbed on the interface as

a function of n-dodecanol concentration

in the n-octane; and

3. The surface pressure as a function of

the area per molecule.

They did not examine the concentration of

n-dodecanol in the water as this was known through previous

studies. Figure 2 4 summarizes their findings.

Consider now a surface between n-octane and water

which is alternately compressed and stretched. Assume

that the horizontal length scales are large. As the surface
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A +! = A + Re{Ac !, �. 9!

then right at the interface, the bulk concentration would

also be varying with time. If the area oscillations were

small enough, then the concentration and area would be

approximately linear in each other, and

C  o,t! = C + Re{C. ! �. 10!

is compressed, molecules will pop out of the film,

creating a local bulk phase concentration that is in

equilibrium with the newly compressed state of the surface

 see Figure 2.4b!.  We can neglect for now the molecules

that enter the water phase as they are a vanishingly

small fraction of the net exchange in the water-dodecanol-

octane system!. As a result of this exchange of molecules

between the surface and the bulk phase, we will create

a concentration gradient of surfactant that will support

a net flux of material away from the interface under the

action of molecular diffusion. If the surface is

undergoing a steady sinusoidal oscillation, so that the area

per molecule is given by
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The diffusion equation in these circumstanceS

becomes:

2 Cac

D

at
�. 11!

ay'

ivt�

C y,t! = C + Re Cle � ~ 12!

An important feature of the result above is

that we can establish the instantaneous flux of molecules

towards and away from the interface by evaluating

D > aty= 0.3c

lf we now consider the equation for the

conservation of surface active material adsorbed on the

interface we have the general equation  see Levich 69.7!

3F

� +7  Fy -DVF!+j =0
at

� t s n �. 13!

where y is the distance measured normally to the interface.

The solution to equation 2.11 subject to the boundary

condition �.10! is the well known Stoke's formula:
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I' is the surface concentration in

moles/cm [i.e., I' = 1/NA, N =
2

Avogadros number � x 10 ! ];
23

v is the tangential liquid velocity

where

at the surface;

D is a surface diffusion parameter
S

 we shall ignore this term!; and

j is the flux of molecules to and
n

from the surface expressed in

2
terms of moles/cm sec.

In the problem at hand this equation becomes:

~t+ a Bx 3g �. 14!

y=0

The oscillatory straining motion of the surface can be

modeled by selecting

  ikx-idt!

where k is selected to be very small so that variations in

the 'x' direction can still be ignored in the diffusion

problem  allowing us to use Zquation �.l2! with minor
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modifications to calculate 8c/3y!. Thus:

ar + R   ikx-iot!BI' + < Re .k ikx-iat!Re ule > + I' Re ik ule

Sc-D
3g

�. 16!

Now let:

R  ~ 3.kx-iGt!
0 1

�.17!

and assume

c x,o,t! = 6 r  x,t! �. 18!

  . ~ ikx-iat!   ikx-ivt!  .! I, ikx-iot!

 .! ikx-iot! + R  ~ ikx-ivt!R  .! ikx-io't!
o 1

-l
where 9 has units of cz , and is given by the reciprocal

of the slope of Figure 2.4b. Then Equation �.16! becomes:
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� � i! < ikx-iat!
6 1

where

6 = ~2D/a �. 19a!

If we now assume that ul is small in some sense and that

I'1 « I' , then:
0

Thus,

k
I = r � u

1 o a 1
�. 21!

The factor   � ! i.s the phase velocity of the compressional

wave motion that we assumed for the horizontal velocity

field. Thus, if we neglect the diffusion related term

1- i  2 !gd, we can see from Equation �.21! that the small-

velocity  i.e., � ul « 1!.k

a

ness condition imposed on ul is that ul  and thus the local

particle velocities! be small compared to the wave phase



-36-

l/2
7 4 1 0 8  XR! T

12 ~6
Pvl

�.22!

 see Reid and Sherwood �8!, equation 8.34!.

N = molecular weight of solvent

 e.g., n-octane = ll4 gm/mole!

T = temperature

p = viscosity of solution  centipoise!

where

 = 10 cp!

Equation �. 21! also tells us that the process

of diffusion tends to reduce the magnitude of the oscilla-

tions of the surface concentration for a given oscillatory

horizontal velocity field. This phenomena is known as

relaxation. For "insoluble" surfactants, 5 is very small

and this correction is negligible. However, in the

example we are presently studying, p, the reciprocal of

the slope of the I' versus C curve in Figure 2.4b, is in

4 5 -1
the range of 10 to 10 cm

The parameter 6 is determined by the diffusivity

of the surfactant in the bulk phase and the frequency of

the oscillation. The diffusivity of solute 1 in dilute

solution in solvent 2 is given approximately by the

equation:
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v = molal volume of solute at normal
1

boiling point  cm /g mole!
3

K = "association" parameter of solvent,

which may be taken as approximately

1.0 for oils.

For dodecanal in n-octane at 300 K, this yields:

D12 = 10 cm /sec-5 2
�. 23!

Thus, we can establish a frequency at which the relaxation

effect becomes of principal importance in the coupling of

the interfacial straining motions and the surface con-

centration. Requiring, for example, that gh < 10, and

choosing g to be 10 , we have:

g6 = 10

a = � D = 2028

R10 2 12
�. 24!rad/sec

-3 3and v to be 5 x 10 cm /gm-mole. Thus D.2 is typically
12

-6 210 cm /sec  or perhaps a factor of 10 smaller! and the

Nore generally, we may consider M to be typically

3 x 10 gm/mole, T to be 3 x 10 'K, p to be 10 to 10 cp,2 2 0 2
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relaxation frequency, a , is approximately:

o=2x10g �. 25!

aT dT ar
Bx QI' 3x

�. 26!

But

uI = R  'kI' ikx-iat~ = Re/I   1! R 'k ikx-iat
Bx 1 0 u

0

�.27!

Thus, if 9 is 10 , then the relaxation effect is of prin-4

cipal importance for frequencies below a = 2 rad/sec

 i.e., it attenuates the surface concentration oscillations

by about a factor of 10 or more relative to the straining

motions of the velocity field!, but at higher frequencies

it becomes of lesser importance.

The presence of p in the denominator of Equation

�.22! suggests that the relaxation frequency diminishes

for more viscous oils.

The tangential stress applied at the interface

may be determined by relating the 'X' variations in the

surface concentration to the equivalent 'X' variations

in surface stress. That is:
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u = � ,  the phase velocity of thea
o k'where

compressional wave! and

R = a complex relaxation factor;

R being defined by:

�. 28!

If we assume that the variation of T with I' is reasonably

approximated by a straight line about the point I', then
0

over the range of the oscillation

dT
E

0
dI'

= constant
r

�.29!

E is the surface elasticity  in the
0

same units as T, i.e., dynes /cm!.

E is seen to be a positive, real
0

number.

where

Thus:

u3T Re  E   l! R .k ikx-iot!
3x o u

0

�.30!

But the variation in the local strain of the surface

elements due to variation in the velocity field is given by:
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x

t

u dt =  'k  zk ! xkx-io't!
2 -ia

0
x

URe  -k   1! ikx-igt!
Q

0

�. 3l!

 see Section 6!

Letting

ik  ! = e e , and
i9x

u S
O

�.32!

E
0 e R �. 33!E R = E [R[e R

BT 0
E e R ikx-iot+i8xie

3x g 6 1/2 s l- 8<+ ~ !

then Equation �. 30! may be written as:



-41-

where: �. 35!

�.36!

Ef the surfactant is insoluble  gb = 0!, then we

can readily see that 9R= 0 and ~R~ = 1, and the tangential

stress condition is given by 8 times the local derivative
0

of the strain. As p6 grows, the coupling between the

tangential stress and the straining of the surface dimin-

ishes, and a lag, 8 , is introduced which causes the

maximum stress at any position to be applied following

the instant of maximum strain. At very large values of

gd  i.e, very low frequencies for any given system!, the

stress falls to E /95 times e and the lag is 135'.
0 s

The problem in. applying this model to the oil-

water system is that we know virtually nothing about the

g's or the Z 's for the complicated mixture of organic
0

compounds that we call oils. This ignorance is best

manifested by the complete absence of data that might

simply suggest which surfactants are to be found in which

oils.



Moreover, this simple treatment has not covered

interactions between surfactant types. This could well

be a critical feature of the oil problem because of the

diversity of the chemical compounds found in oil. E.H.

Lucassen-Reynders �3!  Part III! has shown that, highly

insoluble surfactants in t: he presence of more soluble

surfactants cause interactions at the surface that have

the effect of reducing the effective relaxation, thus

increasing E  R~. Since there are bound to be surfactant
0

species more insoluble than others in t.he oil mixture,

this suggests that, a simple knowledge of the available

surfactant type is not sufficient. It appears that we

require a thorough chemical analysis of several repxesen-

tative oils coupled with an examination of their

dynamical properties if we are to come to grips in a firm,

quantitative fashion with this surface elasticity phenomena

as it might apply to the oil-water system.

However, our ignorance of the exact behavior of

the oil-water system does not support the notion that

there is no monolayer-induced surface elasticity in the

oil-water system. There is, for example, a wealth of

common knowledge relating to the calming effect of oil on

waves that suggests such effects may be of great importance.

In fact, we show in section 7 that in the absence of
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surface elasticity, there can be no strong damping of waves by

oil, and so the damping of waves by oil may be taken as a

reasonable validation of the probable importance of

surface elasticity. To accommodate this situation we

shall therefore simply assume that the surface elasticity

exists and examine a range of values for this parameter.

Due to the complicated nature of the relaxation phenomena,

we shall also assume that gd is very small, i.e., that the

surfactant, is either a very slow diffuser or of very low

solubility. As we shall see in the subsequent sections,

the analysis is still rather complicated, and even if the

requisite data existed, such assumptions would. be warranted

in any initial development.

Since oil is of a varied composition, we shall

also examine three oil types which we call "light",

"medium" and "heavy" and which are defined in Table 2.1.

Some substantiation may be found for the hypothesized range

of elasticities from Table 5-IV in Davies and Rideal �961,

page 265!.



maLE 2.1

GENERIC OIL TYPES

MediumLi<iht Heai~

Property �0'P!

viscosity  cp!

Density  gm/cc!

Oil-air tension  '/cm!

10 100

.85 .9.8

303030

2020

3-3003-300

Oil-water tension  '/cm! 20

Range of Elasticities  '/cm! 3-300



-45-

Most oils will find their counterpart in one

of the three types. For example, Arabian Light crude oil

is very much like the "Nedium" oil.

This discussion of the interfacial elasticity

and the possible complications that might arise in the oil

spill problem has to this point been directed at the more

general characteristics of monolayer covered interfaces.

However, in addition to the difficulties associated with

the diffusion related relaxation phenomena and the

possible interactions of mixtures of surfactants, there

are some particular complications that arise when we

consider the application of these strain dependent surface

tensions to the surface wave problem. In particular, the

surface tension induced differences between the normal

stresses applied by the upper and lower fluids on the

interface may, in general, have a nonvanishing, steady

second order term. This term arises from the possible

synchronization of the time variations of the local

radius of curvature with the oscillations of the local

surface tensions In ordering our problem we would normally

require that the oscillations of the surface tension be

small compared to the mean value. This would have the

effect of causing any steady components to be relatively

small and thus negligible to our analysis.
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However, for many surfactants the initial rate

of change of surface tension would be very large. That

is, the elasticity could be as large as the surface

tension or larger. In this case, the extrapolation to

the higher order term associated with the synchronization

discussed above would suggest the presence of a non-

negligible steady quantity. Actually, of course, the

surface tension would only change a small amount before

the straightline approximation implicit with the use of

an elasticity would cease to be valid. That is, sinusoidal

variations in strain would not lead to simple sinusoidal

variations in the local surface tension, but would in

fact lead to highly chopped wave forms for the surface

tension, that would be rich in higher harmonics and perhaps

have a net average offset. In short, the range of values

hypothesized in Table 2.1 for E is not compatible with

the interfacial tension selected for the oil-water inter-

face if we anticipate carrying these results to second

order in the parameter that measures the wave induced

strain.

However, a lot of problems arise in carrying the

analysis to second order, this being but one of them. Our

approach will therefore be to look at the first order

problem in happy ignorance of these complications. We



shall then restrict. our discussion of the second order

problem to those very general features of the problem that

may well be insensitive to these complications. The only

alternative is to develop the surface tension versus local

strain in a Fourier series compatible with the actual

surface tension behavior, and this would introduce compli-

cations that would soon overwhelm us. This is, however,

a mathematically interesting phenomenon and subsequent

investigators may well find some useful analysis following

this alternative to its conclusion.
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3. GENERAL PROPERTIES OF UNCONSTRAINED OIL
SPILLS ON THE OCEAN

The interaction of an unconstrained oil spill

with waves on the surface of the ocean is a subject that

is best approached with a good understanding of the

experimental observations presently available. To attempt

otherwise, to theorize without the benefit of the

observations, is to become mired at an early point in

the multitude of competing and complementary physical

processes at work within this very complicated physical

system. In fact, in apparent contradiction of the

theoretical complexity, actual oil spills exhibit some

remarkably consistent features despite wide variations

in oil properties and ambient conditions. We will

subsequently develop our hypotheses regarding the oil

spill's interaction witl waves based upon some of the

features so identified. The validity of a model so

formulated will thus rest upon its ability to explain

the features not hypothesized.

The best experimental observations of

unconstrained oil spills in the open ocean for our

purposes are those reported by Hollinger, et al �3a!,

�3b!, �4!. These spills were conducted, by the U.S.

Coast Guard in cooperation with the Virginia Institute
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of Marine Sciences  VIMS!, the NASA Wallops Island Station,

and the Naval Research Laboratory in Washington, D.C.

The petroleum derivatives tested included No. 2 fuel oil

 home heating oil!, No. 4 fuel oil  a higher boiling

fraction suitable for many light industrial purposes,

erroneously identified by Hollinger as 'No. 4 crude oil'!,

and No. 6 fuel oil  a heavy residual fuel oil used

typically by large power plants, again this oil was

mistakenly identified by Hollinger as 'No. 6 crude oil'!.

The spill volumes were in the range of 200 � 630 gallons,

and the tests were conducted in both moderate and

intermediate  white caps! sea states. The test sites

were in the Atlantic Ocean off the coast of Chesapeake

Bay. The oil spills were created either by draining

50 gallon drums floating in the water, or by discharging

the oil from a tank on the deck of a Coast Guard Cutter.

The release process typically took several minutes

suggesting that the initial spreading was not

characteristic of a point discharge, but rather of a

continuous release. En fact, because of the release

procedure, each spill tended to exhibit a rather unique

pattern that appeared to be related to the motion of the

ship during the discharge.

Observations of the spill's behavior were then

made from a Coast Guard helicopter and from a specially



equipped aircraft operated by the Naval Research Laboratory.

En addition, samples were gathered from small boats to

provide ground truth for the aerial observations.

The results so obtained included the area

covered by the spill, the thickness profile of the spill,

and the orientation of the oil spill with respect to the

surface wind.

The thickness observations exhibited a

characteristic feature for all tests irrespective of

both the type of oil spilled and the initial pattern the

oil spill acquired during the release process. Broadly

speaking, it was found that the oil tended to separate

into thin and thick regions. The thick region was on

-1
the order of l to 2 mm thick,   l0 !cm! while the thin

region was typically several thousands of a millimeter
-4

thick   �0 ! cm! . The thick region contained 90%-95%

of the total volume of oil spilled, while the thin

region covered an ever increasing proportion of the area.

The thickness in either of the two regions may have

varied substantially. For example, Figure 44 in

Hollinger �4! suggests variations of .4 mm to l.7 mm

for the thick region. Unfortunately these are averages

over the beam spot which is on the order of 50 ft. in

diameter. Thus such averages do not tell us much about



thickness variation with horizontal scales of less than

50 ft. On the positive side mass balance calculations

 see Hollinger �3a!, page 44! based on the beam spot

averages could be counted on to determine the volume of

oil spilled ta within 30% or so, and so we can be

reasonably confident that such thicknesses are represent-

ative of the broader scale thickness variations.

Figure 3.3. depicts four outlines of the inner

region of a spill of 63G gallons of No. 2 fuel oil at

times of 39 min., 76 min., l52 min., and 237 minutes

following the release of the oil. These outlines were

taken from Figure 29 of Hollinger �4!. 'Notice that

while it is true that the inner region grows with time,

an entirely adequate first approximation would be that

this region remains of nearly constant dimension.

Hollinger also observed that the thicker

portions of the oil tended to be located on the leeward

edge of the slick. Since the oil spill was observed

to drift downwind relative to an observer fixed with

respect to water column, the thicker region thus lead

the thinner portion in drifting to leeward. Hollinger

attributes this behavior to the slight elevation of the

surface in the thick oil region, an explanation first

offered by Stroup �2! in l932. Without going into the



M

C4

0 ~

Q

OQ

V g H g
H

IP A

R 0

O g
0

H W

O

CO



-53-

details, this explanation appears to be incorrect insofar

as the oil was behaving like a liquid. However, for

some of the very heavy oils, oils with pour points above

the ambient temperature, this explanation may be useful,

although such oils are typically so dense that they

would rise only 2% to 8% of their thickness above the

local sea surface elevation. This 'sail' idea might.

also have application in the motion of small tar balls

on the ocean.

A complementary set of data was acquired for

a related spill test series by the Virginia Institute of

Marine Science  VINS! under contract to the Environmental

Protection Agency, as reported in MacIntyre, Smith,

et al �4!. Again measurements of the areal growth

of oil spills were made. In addition, the motion of the

spill relative to a 1 meter drogue was documented.

Figure 3.2 aggregates the VIMS data on the

area of 42 fuel oil spills with data drawn from Hollinger's

report for spills of g2 fuel oil in light winds  less

than 10 knots!. Only Hollinger distinguished between

the thick and thin regions in the area measurements and

so the lower data points depicting the growth of the

thick region represents Hollinger's two experiments of

11 July 1972 and 17 May l972. The upper grouping of data
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points includes both of Hollinger's experiments and the

experiments reported by VINS. The VINS oil spills were

of an initial volume of 200 gallons, while the NM oil

spills were of 616 gallons and 630 gallons respectively.

Notice the characteristic slow rate of growth for the

thick region. Also notice that des ite the variations

in s ill conditions and oil s ill volumes, the total

area versus time behavior is a roximatel the same for

Hollinger suggested a fit of t through the3/5

upper data points  where t is time!. As we can see, such

a dependence is supported by the data although growth

proportional to t would seem to be just as acceptable.1/2

The VINS investigators, working with but a subset of the

data, came to the conclusion that a spreading law based

on a t power law was acceptable, but this seems most3/2

unlikely in view of the additional data presented here.

The VINS investigators also established the

fact that the oil tends to drift downwind more rapidly

than a drogue constructed so as to track the motions

of the top meter of water. They found that the divergence

between. the drogue's trajectory and that of the oil was

relatively small for low wind speeds, increasing to 1%

to 2% of the wind' s velocity once the wind exceeds 10

or 12 knots.
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Figure 3.3 is a photograph of a spill of

number 4 fuel oil. This photograph was supplied

through the courtesy of Mr. Richard Jadamec of the

Coast Guard Research and Development Center in Groton,

Connecticut. While it can't be seen from a single photo,

the oil is overtaking dyed surface waters, although the

dye release capsules make sufficient leeway to stay

ahead of the spill. No attempt is made here to quantify

this phenomena's dependence upon wind velocity, although

the wind during this photograph was only about 10 knots,

suggesting VIMS' observed threshhold of 10-12 knots

for this leeway effect may be an artifice of their

experimental method.

Visual observations made from small boats

indicate that the oil in the thick region is contained

in lenses of a few centimeters in diameter. Hollinger

�4, page 54! reports that in simultaneous spills of

No. 2 and No. 6 fuel oils, it was observed that the

No. 6 fuel oil formed larger and thicker lenses relative

to the No. 2 fuel oil. The reported thicknesses for the

No. 2 fuel oil were at considerable variance to other

experiments, however, so this should not i..e regarded as

conclusive.
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FI60RE 5.3

NG i 4 FUEL OIL SPILL ao Ml'NUTES AFTER RELEASE s

HIND IS 10 KNOTS POLLACK AND WHITE PR INT OBTAINED

FROM a5 MM COLOR SLIDE PROVIDED THROUGH THE

COURTESY OF ['iR. RICHARD JADAMEC, IJ ~ S COAST

6UARDg RRH CENTER, 6ROTON, CONNECT!CUT.
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Hollinger also reported. that in at least one

experiment conducted in 10 knot winds with No. 4 fuel

oil, the oil was initially very much dispersed during the

release process, but following the withdrawal of the

ship from the spill site, the dispersed thicker regions

"appeared to pull together into a rather compact thick

region surrounded by a much thinner slick".  Gee

Figure 43 of Hollinger �4! and text of page 84!.

This summary of observed oil spill behavior is

reasonably exhaustive at least with respect to recent

U.S. field experiments. The principal ommissions are

some area versus time results for oils other than No.

area versus time behavior for No. 2 fuel oil obtained.

in higher wind speeds; and some earlier studies by

Guinard �0! that suggested a qualitatively different

spreading behavior, but which are of questionable validity

due to the uncertainties in the interpretation of the

remote sensing data.* There are also some data relating

to accidental oil spills but in such cases the

uncertainties regarding volume spilled, rate of release,

etc. are quite large and interpretation is difficult.

Guinard's data was obtained using remote sensing
techniques that were greatly improved upon in the
subsequent studies by Hollinger.
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With this disclaimer of universality, the

following model appears to be consistent with the

evidence at hand for an unconstrained oil spill in

non-breaking waves once the spill is sufficiently old so

as to be beyond the influences of the method of release.

1. The spill will be composed of two

regions, one region being very thin

with few inclusions of thick oil. The

other region will be several orders of

magnitude thicker on the average, and it

may be composed of many small lenses of

oil compacted so as to be nearly

continuous'

2. The thick region will lead the thinner

region in drifting downwind, and over

time, it will exhibit nearly constant

dimensions. The thin region will spread

upon the ocean causing the area of the

spill to exhibit a time dependence like

t . Based upon the consistency of the1/2

data shown in Figure 3. 2, which were

obtained from spills varying in volume

from 200 to 630 gallons, it appears

plausible to expect the total area to
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grow essentially independent of the

volume released, at lease for spills

100-1000 gallons in range.

3. The characteristic thickness for the

thick region is in the range of one or

two millimeters. Variations in

thickness of a factor of 2 or 3 might

be expected. even if discrete lenses aren' t

formed. The average thickness might be

dependent, upon the characteristics of the

spilled oil, oils with properties like

those of the No. 6 fuel oil forming

thicker blobs than those like Ho. 2 fuel

oil.

4. lf we combine both Hollinger's

observation that the thick region tends

to be reformed after an initial dispersion

and the observed low rate of growth of

this region with time, then we must conclude

that the formation of the thick region is

not simply a short lived transitional stage

in some highly unsteady spreading process.

Rather, we must suspect that some internal

dynamic is at work that tends to stabilize



this geometry, at least in 0he moderate

sea states investigated.

Thus, in considering wave interactions with an

oil spill it would seem sufficient to begin with oil

layers of constant dimensions, neglecting entirely the

problems associated with the spreading phenomena. If

such a model exhibits features that are compatible

with a stable thick region geometry and an enhanced

downwind drift velocity for the thick region, then we

might have learned something. Ne should also keep in

mind the possible temporal changes that will occur

in the physical properties of the oil as it "weathers".

This is to say that while it is clearly beyond the

scope of this study to look in detail at weathering

problems it can do no harm to be aware that as time

passes the more volatile compounds will be evaporating

into the air, just as the surface active compounds will

be washed from the oil-water interface into the bulk

of the water.

The following three sections serve as an

introduction to the matched assymptotic technique.

The initial problem discussed is the water-air monolayer

problem as it is possible to relate this problem to



-62-

previously published results. Section 7 first

specializes the technique to the oil spill problem.
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4. EXPANSION, LINEARZZATION AND NON-DZNEii SZONALIZATION
OF THE GOVERNING EQUATIONS

Throughout. this study we shall limit our

discussion to two fluid systems. Thus the air-oil-water

system is modeled as an oil-water system in which hypo-

thesized stress conditions are applied at the upper

oil surface. The ideas presented can, in principle, be

generalized to more complex cases, but the algebra

grows combinatorially, and the relative simplicity of

the present analysis is quickly obscured.» liJe shall

introduce the first order solution technique by considering

the classical monolayer problem. This corresponds

to the air water problem with a specialized tangential

stress interfacial boundary condition. This simplifies

some of our initial calculations. Also in the interest

of keeping the analysis simple and consistent with the

problem at hand, we assume that within any given region

the fluids are homogeneous, incompressible and Newtonian.

Further, we assume the depth of the underlying fluid

 the water! is infinite.

» In general the restriction to two fluids is a limitation
of little importance for water-oil-air systems due to
the low density of the air compared with either the water
or oil phases.



There are two non-dimensional lengths that

will prove to be of great importance in this problem.

The first is the non-dimensional wave amplitude,

u = aK , where a and K are as defined in Figure 4.1. The
0

second is the non-dimensional Stoke' s boundary layer

depth, c = 6K . Here 6 is the characteristic depth

of penetration of an oscillating vorticity applied at

a surface, diffusing into an irrotational core. On

viscosity and a is the frequency of the oscillation.

Thus 6 varies from one region to the next depending on

the kinematic vicosity of the adjacent fluids. It can

also be seen that v. is the reciprocal of the square root

of the wave Reynolds number since:

K/ ! =  vK/C !

0

C = = phase velocity.0

o K
0

where

Our discussion focuses upon the large Reynolds

-2
number  c» 1! small amplitude case  a «c «1! . In

this problem it is assumed. that the oscillations of the

fluid interface s! are so gentle that particle

dimensional grounds, 6 =  v/v ! where v is the kinematic.5

0
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Propagation

 VERTICAL POSITION OF INTERFACE GREAT/V
MAGNIFIED FOR EXPOSITIONAL REASONS!
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Qisplacements on the interface are small compared to

both the characteristic boundary layer depths and the

wavelength. This allows us to evaluate boundary

conditions known to apply at the interface in terms of

a Taylor's expansion about the equilibrium level. This

is the classical method of linearizing the boundary

conditions.

Xn the first problem to be considered the two

fluids shall be assumed to occupy the entire  X,Y! plane.

The interface lying between the two fluids will be

assumed to have both an interfacial tension and an

elasticity consistent with our understanding of the

behavior of monolayers at the air/water interface.

This case will be called the monolayer problem. Since

the discussion of the governing equations is nevertheless

generalizable to the final oil film problem in which

the upper fluid is of finite depth, these arguments will

not be repeated.

The coordinates are chosen so that the

horizontal direction is associated with the X axis,

and the vertical direction will correspond to the

positive Y axis. We shall limit our discussion to

two-dimensional waves  no 'Z' dependence!. The

equilibrium level of the interface in this problem lies
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where:

 u,w ! =  'P, - 'P !,8 8 8 ~ 8
y' x

�. l!

the f3 denoting u  upper! or k  lower! respectively.

In the irrotational core regions, the velocities
u

will be associated with the potential functions 4 and

4 , where

about the plane Y=O. Two cases will be considered, one

in which the time dependence is perfectly sinusoidal

{the wavemaker/wave tank problem!; the other in which

the X dependence is perfectly sinusoidal  the classical

decaying wave problem!. In the first case, the

irrotational motion will be found to have both sinusoidal

and exponential 'X' dependencies  the wave number is

complex!. In the latter case, the frequency will be a

complex number, leading to a time decaying sinusoidal

motion. The coordinate system is sketched in Figure 4. 2.

In the upper and lower boundary layer regions

formed at the interface Y=O, the velocities will be

ugiven by the stream function V and V respectively,
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1.0

REGION OF OVERLAP

irn  y � 0+ y � ~!

REGION OF OVERLAP

lim  y= 0, y= ~!

-1. 0

NON-D I MENS I ONAL I ZED COORDINATES
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particle velocity to the phase velocity is equal to
2lTa

which equals u. This shows u not only to be related to

the non-dimensional wave amplitude, but also to be a

measure of the size of the particle velocities relative

to the wave phase velocity. Et serves, in fact, as

the primary ordering parameter for the inviscid flow

properties.

The non-dimensionalization is performed in the

outer core regions using the following time, length

and speed scales:

Length

Speed C

Xn the boundary layer regions, the scales are selected

as follows:

j:n the irrotational core regions, the particle

trajectories will be approximately circular. Thus

in the vicinity of the surface a particle will travel

a distance of 2~a in the course of one wave oscillation.

At the same time, a point of constant phase on the

surface will travel a distance A.. Thus the ratio of the



-l
a

0
-1

0
f3 -l

K , g=u,k.

X direction:

Y direction:
Length

Speed C

The rationale for the selection of this particular

characteristic horizontal scales that correspond to the
� 1

interfacial boundary oscillations � K !!. Under these
0

circumstances, the terms in the vorticity equation will

have the following relative orders of magnitude  factor

out a term 0 <!!.

g  d
-- + u Vu = v
at

3 Qj 3 Q!
�. 3!

K
0

-1
K c

= O <, + O vK'!o cr ! +0
0

mC
0

where 0 is the characteristic vertical dimension, and

the velocity is O nC ! .
0

Since 0, is assumed small for the waves in

question,  u « c « 1!, the dominant terms are:

inner boundary layer, y-directed length scale is as

follows. We assume that the interfacial motions will be

the source of O a! vorticity perturbations, having



Imposing the constraint that K'6'«1, we thus require:
0

6 2
a

0

�. 5!

or
1/2

= K
0

�. 6!

The requirement that  K 6! « 1 is thus seen to be
0

equivalent to requiring  s! ' « 1, which is consistent

with the assumed asymptotic formulation.

The non-dimensionalized governing equations for

the stream functions in the upper and lower boundary

layer regions are taken from the vorticity equation,

wnich in two dimensional flow has the dimensional form:

EU
+

Bx By

BMI B~l
+u � +w

Bx By

Letting
1

u' = uC 'Py
0

�. 8a,b,c!

w' =-ac V
0 x

>' =- K  xC 'P + 'P0 QL Bg gg xx

where 'P is O�!, as are 'P and 'Y . 1;e readily find the
X

following non-dimensional form  Note that in the lower

boundary layer w' will now be defined as positive downwards
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so as to preserve the form of the governing equation in

both upper and lower regions!:

�- 9!

[ 'VSee 2 '~~x
pg gg xxxx

E

y/su
where, P =   JL!, y being the non-dimensional outer

y/~

 See Figure 4.2!. The script p willvariable  y = K Y! .
0

not carry the u, R superscript as the correct identification

will always be obvious from the accompanying notation.

We can see from this equation that the asymptotic

expansion for the stream function in the upper boundary
u

layer must at least incorporate terms in c , while in

the lower boundary layer, the expansion must at least

contain terms in c . &e upper and lower boundary layer

stream functions are related in part by the kinematic

conditions requiring continuity of velocity at their

common interface. In very general terms, this therefore

suggests that the appropriate asymptotic expansions

for the upper and lower stream functions must contain
u

terms in both s and ~ .*

* u RThe idea here is to treat c and E as independent variables.
Actually, of course, for any two given superposed fluids,
variations in Eu will be reflected in variations in c~ since
they both share a common dependence on the only adjustable
parameters, Co and Ko However thjs fict.ion is convenient
for the bookkeeping and so we shall retain it.
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Likewise the kinematic conditions linking the

outer irrotational velocities to the boundary layer

velocities suggest that. the outer potential functions
u

must be expanded in a power series in both c and c

Thus, suitably general asymptotic power series expansions

for the stream functions corresponding to rightward

traveling waves are of the form:

�. 10!

c g + c g  y! +c c g  g!...]j+O m !

�. ll!

02 + ] ! + 0   x !

where: �.l2a,b!
�. 13a,b!



and the u dependence is explicitly included in the formula

u,Rfor '2 ' at variance with the more general formulae of

equations 4.1 and 4.2.

The potential functions must satisfy Laplaces

equation:

�. 14!+
yy xx

Corresponding to the assumed X, and t dependence they may

thus be written:

Cu ~   1Kx-sot  +U + kAU + U+U ] -Ky!
OO

0 m ! �. l5!

oo 01 10

O n !

where the h .. are constants related to the kinematic

+ ioQ �  K! 2$ + ia$ +

 E: K'! Q = 0 �. 17}

dynamic boundary conditions.

j:nserting the assumed forms for the stream

functions in equation �!, we find the following linearized

equation for the O o.! terms:
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This can be decceposed further by equating like

upowers of c and e , with the results:

Case 1

�. 18!

P Q..! = 0; i=0,l; j=0,1,2... �.19!
i,j

�. 20!

etc.

Case 2

u a = l+ r ~01+ ~ c10+

�. 21!

�.22a!

l Hxri~lotoo �. 22b!

�, 23a!

�. 23b!

R g~o!

L %
OO

PZZ
"01<oo

Szz
'~ol~oo

SIl
"10>oo
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The general solutions to the ordinary differential

equations defined above are:

Case 1

� � i! �- i!

a.. + b.. q + c.. e ' + de ~ eij 3.j 3.j 3.j ij
�. 24!

1; j = 0,1,2,. ~i = 0,ur

�-i! �- i!

~20 20 20 20
�- i!

1 8 ~+1 8 a 0 �~! e v2
2 oo 6 oo oo

�- i!
dg �+i! ~2

�. 25!

etc.

Case 2

�. 26!
�-i! �- i!

=a +b p+C e~2 +d e+2s
oo 00 00 oo OO

where p is used to denote u  upper! or R  lower! as

desired.
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�-i!
u U u

01 Ol 01 ~ Ol
+

�-i!   l-i!
du ~2 u �+i!

Ol oo 10

�- i!
u �+i!
oo 10

2/2
� ' 27!

etc.

We have thus constructed the general solutions

to the first order problem. Ne have now to specialize

the coefficients so as to satisfy the pertinent boundary

conditions.
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5. BOUNDARY CONDITIONS AND MATCHING TECHNIQUES FOR
THE MONOLAYER PROBLEM

The fluid motions associated with the rightward

traveling interfacial waves are presumed to die out as

we get farther and farther away from the interface. This

behavior has been insured with the y dependence selected

for the potential functions 0 , 0  equation 4.15 and 4. l6!.u

u
Corresponding to our expansions in r and c

for the wavenumber, potential functions and stream

functions, we shall define the interface with the function

F x,t! as follows:

F  x,t!
�. 1!

Re ee ~~ + e ~l0 ~ ~0l+ .]! +Op =y

At the interface, we require the normal stress

to be discontinuous by an amount related to the product

of the surface tension and the local curvature of the

interface. We also require the tangential stress to

be discontinuous by an amount related to the  tangential!

variations in the surface tension as induced by gradients

of the surface concentration of surface active molecules.

These statements may be formulated in dimensional units

as follows:
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0 Q = T �. 2!

y=F

ua � v l =Ef
sn sn ~ s

�. 3!

y=F

is the component of fluid stress

at the boundary of region i

acting normally to the interface

 dynes/cm !;2 .

3
0

sn
is the component of fluid stress

at the boundary of region i acting

tangential to the interface

 dynes/cm !;
2

is the surface tension  dynes/cm!;

is the radius of curvature  cm!

of the interface;

is the modulus of elasticity

 dynes/cm!; and

is the gradient of the normalized

surface concentration taken along

the interface. It has dimension

-1.
 cm !, and is entirely analogous
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to longitudinal variations in

the strain of a beam in the commonly

encountered longitudinal wave

problem.

Bw
iF 2

+ 2p
1+F�'

3. 3.
a =-p

nn

y=F

F

2p fu + w ]
�+F !

X

�. 4!

.  l-F ! Bu
1 X

sn
+

 l+F '! By

Bw

y=F

BUF
x 4 3.

�+F '!

inserting these forms into equations �0! and �1!, non-

Qimensionalizing using the inner boundary layer scales

coupled with the stress p<C , and introducing the

following non-dimensional coefficients, we have

The normal and tangential stresses can be

evaluated in terms of the x and y derivatives of the

horizontal and vertical velocities and the local pressure

as follow  see Weyhausen and Latone �0!!:
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3w
u

3'w

� + gc
By 3 P

] F 2
X

1+F�'

Bw 1 3u
2

Bx E Bp�+F !

�-F�! ~ aw 1 Bu2

*  g !~
�+F�'! Bx 6 Bp

y=F

y=F

�. 7!

-p + qp + u! FQ-q!u

9

Bw 1 Bu

qc
2 +

u
Bz c Bg

1 Bu Bw

q c ! � � +u

3 3' Bx

u

4 � g
1-F Bx

F

�. 6!"< �~F ! ~/2
X
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where

u g,
the ratio of
densities;

EK/p C the Weber

number;

g/KC
g 0

a Froude number

 eg., gravity
waves correspond
to e = 1!.

g

TK/p C
9  eg., capi 1 lary

waves correspond
to M = 1!

0

 p +p gy!
the non-dimensional
dynamic pressure.2

p!C

and the velocities u , w are positive in the sense of

the outer  x,y! variables.

The dynamic boundary conditions, �.6! and �.7!,

are linearized by expanding about the equilibrium level,

y = 0. Expanding and rewriting in terms of the inner
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variables, p, the resulting order o, equations are

determined to be:

-p + q + u!F �-g!
g

Bw 1 Bu
k

Bx c Bu

y=0

Bu Bw
1l u

q E !' +
Btf BX

y=0

where we have taken account of the sign change in the y

variable for the lower fluid,  u, w being positive wrt  x,y! ! .
9. llThe dynamic pressures, the p and p terms in

equation �.8!, are known in either of the irrotational

core regions from Bernoulli's equation, which in our

non-dimensional variables has the form:

x '~yg-p =4 + � 4
t 2

�. 10!

R~Bw
2 E: � +

Bp

Bw

qc- Bp
y=0
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where the hat, ", denotes the irrotational value. The

Navier Stokes equation may be utilized to determine the

variation of the dynamic pressure within the boundary

layers. Combining these observations we may evaluate

p ~ and p I with the equations:u

y=0 y=G

  ~P
0

1
ay

I
y=0

+

R~
�. 11!

pl = pI +
y=0 y=+e 9

�. 12!

where y denotes the horizontal plane in which the inner

and outer solutions are to be joined.

The value of the irrotational component of the

inserting these expansions into �. 11! and �. 12! we

have the result that:

a
p I � � «9!+

y=0 3y
p

y=O

Bp
 c. I! + . ~ ~ � dy.

ag
0

3 p

2

�. 13!

y=0

dynamic pressure at the matching point y-= s y may be8

determined by expanding p about y=0 in a Taylor series."8
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u

 E P } +

y=0

0

�. 14!

where, again, account has been taken of the sign of

in the lower boundary layer �. 13!.

The order u equations determining the vertical

pressure gradient within the boundary layers are:

Bw
k

Bw Bw
2 k 2 R

c � � +  c ! � +2

8t Bx~ dp'
+ O u ! �.15!

u u > ul
Bw w 3 w
� +  cu!' +

at 3x 3g

Q
P

E + O a ! �. 16!

Where w is now considered positive downwards.

Thus, the integrands in the �.13! and �. l4! may be

evaluated as assumptotic series based on the inner stream

function expansions  i.e., equation 4.10 and 4.11 coupled

with equation 4.25 through 4.27!.

The kinematic matching conditions require that

the horizontal and vertical velocity vary continuously through

the matching region. These conditions may be stated

as follows:
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 horizontal velocity!

�. 17!1 p

 vertical velocity!

�. 18!e y � +s cf ao
Again the potential functions 4 and C , may be8

X

bout =0 in a Ta lor series. The stream

techniques are consistent with the idea of the

assumptotic nature of the power series expansions for

the inner and outer solutions. For example if we

choose ir = 1/c , then for the inner variables we have

Rim y ! = Lime = ~ thus e ~ 0; while for the

outer variable, Lira  cp ! = Qm  E ! = 0. Thus the

matching point for the outer solution goes to zero as

These conditions provide a link between the

a , b.. parameters of the inner solution and the A..8
ij

parameters of the outer solution. They also imposed

the requirement that d.. = 0, i.e. no exponential
ij

growth in the boundary layers. Since there are many

expanded a y

functions 7 , V , are evaluated under the assumption that8

ij x

terms of the form e  9~ may be neglected. These -�- i!!~~!
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equalities generated from these conditions, we shall not

present them here with the exception of the important

result that all b , = 0.  see Appendix A for a complete
oi

listing of these conditions!. This springs from the

horizontal velocity matching conditions,  equation 5. l7!

which produces terms order a/E in the b . coefficients
o J.

which can have no counterpart in the assumed outer

solution.

The linearized order a kinematic boundary

conditions following from continuity of velocity at

interface are of the form:

 horizontal velocity!

�. l9!
l 1

u
4y

E

y=0

 vertical velocity!

�. 20>

Notice that the sign on the right hand side of equation

�.20! is positive, consistent with the downward directed

inner variable utilized in the lower boundary layer.

Again numerous equations result and they may

be found in Appendix A. One immediately important

finding is that:
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�- i!
bS CP
03. ~2 OL

�. 21!

which when combined with the result discussed above

 b . = 0! provides us with the requirement that8
03.

8
<oi = oi �. 22!

That is, the only terms that can exist in the V expansion
8

g0
that are of order  uc ! are constants, resulting in

vertical velocities that are constant in g, although

variable in X, at this order of

The procedure now is to evaluate 5.13 and 5.14

using the expansions of the stream and potential functions

and equations 5.15 and 5. 16. Kith the resulting expansion

for the  non-dimensional! dynamic pressure, we can

evaluate equation 5.8 in terms of an asymptotic

upower series in u> ~ and c . This then provides us

with a number of equations that can be readily simplified

using the kinematic and matching conditions springing

from �. 17! through �. 20!. These steps will be sketched

in the next section.

It is interesting at this point to compare this

rather tedious, yet straight forward accounting



-89-

procedure with the classical eigenvalue technique.

Dorrestein �2a!, solving the single fluid monolayer

problem  no overlying fluid! is faced at this point with

a fifth order equation  equation �2!! in frequency to

the half power  or fifth order in K! that is anything

but simple. Harrison �8!, considering the two fluid

problem with no monolayer, is also faced with a fifth

order equation in a  fifth order in K, see page 398!.

In theory both the above analyses are more general than

the present study since no restriction is made on the

WaVe Reynald'S number. HOweVer, in Order tO make head-way

against these formidable algebraic problems, both authors

make a large Reynolds number assumption. Harrison lets v

and v' be small, while Dorres tein def ines the parameter 8,

 which is identically the wave Reynold's number! and

notes e « 1 for waves of practical importance, allowing

him to continue by using small parameter expansions

 eg. equation �7!!. Thus, in a practical sense we have

lost nothing by assuming from the beginning that

l, and we have gained a great deal, both in the

simplicity of the calculations, and in the almost

clinical way in which the various properties can be

isolated and defined  eg. the dynamic pressure with

equations �.13! and �.15!!.
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6. FIRST ORDER PROPERTIES FOR THE
MONOLAYER PROBLEM

equations for the order 'a' normal stress condition �.8!

Case 1:  o' = 1!

iApp + iqA 0 + to � � q! go . R, u

g

�. la!-Q!
a 00

10 + > 00 00!Y + iqAOl

+ v � � q!g = -<o    +F 02K ! � lb!g 10 a 10

u u u . uApl + q  iA10  app + iA00! Y !

 ] -q!g = -M  F +Q 2K ! �.1C!
g 01 a

Case 2:  K = 1!

o . K . uxA00 + xqA00 + G! � q!  pp
g

Performing the indicated expansions and equating

like powers of c , c , we find the following hierarchy ofu
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�. 2a!
o 00

U U
10 >ol0 00 U Ol+ iolO 00

�. 2b!+ e 1 q �0 u> F'10

u u ~ U

01 Ol 00 ~ lO Ol Ol

� ' 2c!+ + � q! $0l � <a F'01

Case l:  o = 1!

UJ + <d 1-
�. 3a!

lo
�. 3b!

10

�. 3c!
01

Xf we now incorporate the kinematic matching

and boundary conditions for the vertical velocity  see

Appendix A! we determine:
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Case 2:  K = 1!

+ w �-

�. 4a!1+q

�. 4b!
lo

u
qC

�. 4c!
01

Accounting for the dif ference in nomenclature, Equation

�. 4a! corresponds to Lamb ' s result in 5267, Equation �!,

for wave motions on the interface of two superposed

fluids. The horizontal velocity boundary condition at

the interface may be invoked to establish the relation-

ship:

uclo = /2 �+ i!  po + clp �. 4d!

where use is made of the result bio blp �0 We canu

now use the tangential stress condition to solve for

Ueither Clp or Clp in terms of $00 ~

Since we are limiting our discussion in this

section to immiscible monolayers, we know that variations

in the local surface concentration wi11 be associated

solely with straining motions in the surface. If u is
m
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the component of the Eulerian velocity lying in the

direction of the local tangent to the surface  denoted

here by the unit vector m!, then:

�.5!u � u ' m
m

~ au
e = � =  m V u m!!

as y=F

or,

�-F ! F
2

e= u 2 + "  u +w!
"   j. + F2!   . + F !

X X

p
XX

2
�+ F ! y=F

�.6!

Here, e denotes the rate of strain at the surface; m . V

is the gradient of a scalar in the direction m;

1
m =  

�+ F2! 1/2
X

�.7!

Zf we now take the gradient of this scalar quantity,

evaluated at the surface, in the direction of the surface

tangent, we will determine the local Eulerian rate of

strain of the surface whence:



and use is made of the surface kinematic condition:

<F = w � uF !
t Z

y=F
�.8!

Thus the strain of the surface at any time 't' will be

given by the integral:

t
Bu

e = > dt+ el x!
0

�. 9!

where el x! is the initial state of strain of the surface.

We can readily argue that el x! is of little importance

in the wavemaker case  Case l! because we can leave the

wavemaker on long enough so that any initial variations

in strain have relaxed via self induced oscillations.

However, in the time decaying wave problem, it is possible

to envisage pathologic states of initial strain that lead

to decaying standing waves that make the problem dependent

upon el x!. These problems, however, have not been

considered by previous investigators and since the

purpose of this section is to demonstrate the solution

technique by comparison with these earlier results, we

will not take the matter any further. Thus, setting el x!

to zero, we may determine that the variation in. strain

along the surface is given by:



=m. le=
s

e
X

F
x

�. 10!

which to first order in e is simply:

2 . 2
u i 3 U

~ dt
dx 0 3x

0

�. 11!

where we have invoked the time dependence of the 0 a!

velocities.

Thus, the highest order, non-zero components

to the tangential stress condition provide us with the

equation:

u u � � i! u
10 q 10 00 ~ 10 �. 12!

But we also have the kinematic requirements of equation

Setting < = 0  no monolayer! we find:

Cu = -g v2�+ i! d
10 00 1 + qQ

�. 13!

�.41! relating Clp and Clp to �0, so we can evaluate Clpu u

and Clp in terms of �0.R



C~ = ~2� i!
10 00 1+ qQ

�.14!

where:

u U
Q = � =   !

JL

Inserting these values into equations �. 4b! and �. 4c!

fCase 2], we find the following equation for the order

damping:

9. u
alO + c apl 6  al0 + QaO] !

/2 �+ i! Q
� + qQ! 1 + q

�. 15!

Rewriting this equation in dimensional units, we have.

u
aO  c al0 + c a01!

N � + i! KO/0 ! p~p  '0 4~!l/2
u u �. 16!

 p<+ p !  p v + p<v< !1/2 1 2

in agreement with both Harrison �908, page 399! and Johns

�968, equation 6.2S!.
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Alternatively, if we retain the   parameter,

we find:

W l+ i! !
1 + Q

l0 00 � � i![1 � � � m]
K2

�. 17a!

�- i! Q

10 00 � � i!
[1-m 1

�. 17b!

where

m =

+ qc
�. 18!

This parameter 'm' may be bought of as the

square of the ratio of the longitudinal  compressive! wave

phase speed to the transverse  gravity plus surface

tension! wave phase speed. The mass entrained by the

compressive motion is represented here by the epsilon

terms in the denominator,  i.e., c + qc !.
u

Summing the first order  c ! contributions to
1

the f requency perturbation, we have:
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u

1 10 01

�. 19!

which reduces to the following form upon setting q = 0,

-3
[this is air-water problem as q = p . /p

air water
O�0 ! ]:

m l � m 
�. 20!

� � W2m +m !
2

8 = c and X =
l/2

so if:

X

d ~2~1 2
m

d 72
then

and

1 1/2 v2 R
~2i = 4 8 4 ~ , then

The problem associated with this specialization of g, i.e.,

q = 0, corresponds to the problem studied by Dorreseein

and if we make the following identifications,
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2Q
2

� zm Eq. 6.20!
 l � 2md + 2ad

�, 21!

in agreement with Dorrestein  see page 270 of [52a]! .

The kinematic properties of the flow in the

vicinity of the interface are of some interest due to the

limiting form of C10 as m goes to infinity. Evaluating9.

the horizontal velocity in terms of the lower boundary

layer expansion we have:

Q  x y t! Re  xe [$10 + s $20

+o u !
2

ikx- iat k �- i!
= Re ae [bio ~2 C10

[- l � i! /&2]y   R! ] ]

+O a !
2

�. 22!

From the matching condition applied to the vertical

velocity at y = -c y , we can readily show that

we can show that the imaginary part of Equation �.20! is

the negative of:
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bl p iAO 0 = Ep 0   See APPendix A! �. 23!

Considering the air-water case  q~p! we can specialize

Equation �. l7b! for the case m~ ~, with the result:

 l+ i!Pim  C1»
m~~

q-+0

�.24!

l
Thus the order a horizontal velocity at the interface

approaches zero, since

 l � i!
Eim  b10 ~2 C10»

m~~

q~0

 l � i!  l+ i! ! p
00

�. 25!

4im  m} = Lim <~! ~
wp

R -+0

From a mathematical standpoint, there would seem

to be nothing too remarkable about this result, and in

fact if we invoke the asymptotic nature of our expansion,

then we should expect m to be very large, because



However, for real fluids in conditions characteristic of

the problem we are considering, the parameter   is typ-

ically of the same order as c , or perhaps even smaller,

over the range of frequencies and wavelengths for which

the analysis has any validity. Thus, m is usually order

l or smaller, and. the appropriate specification of the

asymptotic nature of the expansion must include a

statement to the effect

= O E + qz !
k u

a r + qe !
u

Despite the physical obscurity of the require-

ment that m be infinite and thus that. the horizontal

velocity at the surface be zero, a number of analyses

have been performed using the kinematic condition,

u x,o,t! = 0, as a substitute for the tangential stress

condition. This simplifies the analysis to a considerable

extent, although the interpretation of the tangential

stress condition becomes paradoxical. Since the surface

is presumed to be immobilized, there can be no  first



order! variation in the surface concentrations of the

 immiscible! surface active compounds, and so the surface

film does not contribute to the balancing of the tangen-

tial stress applied by the shearing motion of the viscous

liquid beneath the interface. The stress must, however,

be balanced somehow, so we are led to the idea that the

velocity is not quite zero  so g g 0!; that the m para-

meter is not quite infinite; and that the product  mE !
s

remains of such an order as to balance the viscous

stresses. This is a rather unsatisfactory state of

affairs and we can readily appreciate Lamb's reluctance

to discuss this problem in any detail  see 5351!.

The m parameter need not be infinite before the

surface film begins to exert a pronounced. effect on the

wave behavior. For example, with q = 0  the air-water

case!, the wavenumber, frequency and decay parameters for

the two cases under consideration become:

Case 1

�. 26!
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2
m

Xm K ! �.27!
 l+ 2v ! � � &2m+m ! W2

2

a

Case 2

Vl � � ~2 m! �. 28!

2
mIm a !�

1
�. 29!

/2 l � v2m+m !2

We can see that Im K] ! is of the same form as Isa al! for

gravity waves  v = 0!, but it is only 1/3 the magnitude
6

of Im o ! for capillary waves  e = 1! . These limiting

cases are shown in Figure 6-1.

We can also compare the horizontal velocity at

the interface with the horizontal velocity of the

irrotational wave motion lying just beneath the surface

boundary layer. This comparison is most easily made in

terms of amplitude and phase response functions as defined

below.



SPATIAL AND TEMPORAL DECAY COEFF IC I ENTS AS

FUNCTIONS OF THE NOND I MENS IONAL

ELAST I C I TY PARAMETER

Z Ia ! and
m

2 3

Elasticity Parameter

 nond imens iona 1!
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  ! ~ u {XYLO Rtj
 u x, y,t!

1/2
P.   1 � i! K 2  l � i! R 2

[R e b10 ~2 C10 + b10 ~2 010!]

[ e  10! 1 + [  bio	
2 2

l/2
]

1 � Wm+m 2
�. 30!

lm[u x,g,t! 1

Re [u x, y, t! ]
-1

P m! = tan

= tan   " �. 31!

These functions are plotted on Figure 6-2a,b. The locus

of points corresponding to the  complex! ratio u x,O,t!
U X P R t

may be shown to be a circle centered at �/2, -1/2i! as

indicated in Figure 6-c. This circle is parametric in m

as indicated, and is analogous to the combined amplitude

and phase functions.

These figures show that the effect of the
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monolayer is pronounced even for values of m considerably

smaller than one. Further, m must reach a value in

excess of 4 or 5 before the amplitude of the interfacial

horizontal velocity is appreciably smaller than the outer,

irrotational velocity.

The extension of this analysis to the more general

case of a soluble surfactant has been attempted by a number

of authors, notably Lucassen �7!, Goodrich �1!, and

Hansen and Mann �4!. The Lucassen paper in particular

attempts to incorporate a more elegant model of the surface

elasticity phenomena. However, and without exception, these

authors found that the only practical way to make headway

was to define an amplitude and phase parameter analogous to

the R and 8R of �.28! and �.36!. At this point the mathe-

matics becomes trivial and the point of difficulty is trans-

ferred to establishing realistic values for R and 6R. As

was pointed out in Section 2, there does not appear to be

sufficient experimental data to support this step, and so

our analysis will stop here,
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7 ~ FIRST ORDER PROPERTIES OF THIN OIL LAYERS

In the model selected for this study the

characteristic depth, d*, for the thick region of an

unconstrained oil spill is assumed to be on the order

frequencies for the three characteristic oil types.

Table 7. 1 presents the frequencies for which the

Stokes depth �! is 10 times this characteristic

depth � = 10d"!, equal to the characteristic depth

� = d*!, and one tenth the characteristic depth

� = d*/10! for the three oil types.

TABLE 7. 1

Frequency Ranges in which the Stokes
Boundary Layer Depth Correspondes

to Observed Spill Thickness

Frequency RAD/SEC
Generic

Oil

Type
a �0d*=6! o  d*=6! o d*/10=6!

 Stoke's larger!  Stoke's equals!  Stoke's smaller!

300Light

Nedium

Heavy

.03

10 1000.10

10,000100l. 00

of lmm. This is in rough correspondence with the Stokes

boundary layer depth � <  v/cr! ! over a range of



It is commonly observed that the peak of the power density

spectrum for surface wave amplitude for representative

oceanic conditions falls in the range of .5 to 5 radians/

second. The spectrum decays rapidly for the frequencies

above this peak, the dependence being approximately

-5
like z for gravity waves. An approximate upper cutoff

frequency beyond which we can reasonably ignore any

contributions to the spectrum is thus somewhere in the range

of 20 to 50 rad/sec. Prom the table above, such a

limitation on the range of the frequency parameter is seen

to insure that the Stokes boundary layer depth is always

at least of the same order of magnitude as the spill

thickness, and, more typically, the spill thickness

is less than or equal to the Stokes depth. This is to

say that in the oil spill model we have adopted here,

we need only consider non-dimensional oil thicknesses

that are similar to, or less than, the non-dimensional

boundary layer thickness which in turn suggests we need

not include a region of potential  irrotational! flow

in the overlying fluid. By the same reasoning, it is

also apparent that the depth of the thin regions of the

slick are very much smaller than the Stokes depth.

The observation that the thick region may be

composed of an aggregate of small lenses of oil is a

difficult one to model. One can envisage a variety
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of interesting dynamical problems associated with such a

geometry especially if the thin film in-between the

lenses has a moderate elasticity. Unfortunately, we

have no data on either the distribution of lense sizes,

or on the elasticity of the thin film lying between the

lenses.

Moreover, the observational evidence for this

phenomena is so patchy that there is some possibility

that this is not a general characteristic of unconstrained

oil spills. Consequently, we shall take the option at

this point of modeling the various regions as a

continuous layer of uniform thickness, leaving the

equally interesting lense problem for subsequent

investigation.

From Figure 3.1 we can readily see that the

characteristic horizontal dimension of the thick region
4

for this particular spill was on the order of 100 m �0 !.CIA

With our assur:ption regarding the continuity of the oil

layer, such large horizontal scales are sufficient to

justify modeling the region as a layer of constant

thickness and infinite extent in the two-dimensional

plane. In fact, we will subsequently find that the

important interaction between the oil and the waves occurs
2for wave lengths on the order of 10 or less, and so it



+ ' "lo + ' "Ol +
u

 R ! K +  c c ! K ] + ~ ~ + g �. 1!

� 2}a = 1-

is only necessary to postulate horizontal scales for the

thick region on the order of a few meters to support

this idealization. Figure 7.1 presents the coordinates

for this idealized problem.

The governing equation for the lower fluid

potential region remains the same as in the monolayer

problem discussed above. Likewise, the governing

equations for the oil and water boundary layer regions

remain as developed above. However, it is convenient

in the present problem to modify the functional forms

used in the upper boundary layer so as to take advantage

of the finite depth of the oil layer. We shall therefore

replace the exponential functions of equation 4.24 with

hyperbolic functions, as indicated in equation 7.3 below.

We shall also restrict our discussion to the complex

wavenumber problem  i.e. the spatially decaying wave!

as this is more applicable to an oil spill subjected

to incident waves generated far upwind of the actual

spill. The assymptotic power series expansions are thus:



FIGURE 7,1

NON-DIMENSIONAL COORDINATES FOR

THE OIL LAYER PROBLEN



 
u U + j U + u~ij ij ij y c ij sinh

for i = O,l; j = 0,1,2,...; �. 3!

�- i! �- i!
a a �~ " aa.. + b- y+C.. e "2 +d.. e

ij ij ij ij ij
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R  ae [y c ~ + > 1+ ...]8 iKx it 8 9 0 i
oo

0  a'!, �. 7!

where the Q.. 's are as defined above;8

F  x t! = Re de jg + z z + c   + ..] ! +

0  u !; and �. 8!

cosh
u

1!

�- i!
 V-d!

v2

1-i}
 y-d!

W2 J



F. x,t! = Re{ac lg + �0 + e �1 + ..] ! +iKxit kkkuk

0 a !. �.9!

In the two fluid monolayer problem discussed

Kinematic B.C.:

D BF
 F + D � y! =

s
+uF-w=0

Dt at

�. 10!

y=F +D
s

Dynamic B.C. s:

a! Normal Stress:

u
0

nn u
P

C2
Pu

�-F~s ! Bw
+2 E! � +

 j.+F', ! By8

+ o.'g F

F
sx

2 ~!'
�+Fs !

1Bu

By
�. 11!

y=F +D

above we had kinematic matching conditions and Bernoulli's

equation to relate the upper potential flow properties

to the dynamic and kinematic boundary condition at the

interface. In this problem we have kinematic and dynamic

boundary conditions to be applied at the surface

y = F  x,t! + D. These can he stated in non-dimensional

form using the outer "y" variable as follows:



b! Tangential Stress:

a. a ~ �-F, !
 c ! � +

L!y !xj �+Fs !

0
sn

Cz
~n o

F BQ

4  a ! =0
� F ! Bxsx

�. 12!

y=F +D

We assume here that no monolayer exists at the oil-air

interface thus the zero on the right hand side of equation

�.12!, above. This restriction is imposed solely in the

interest of simplifying the problem. If subsequent

experimental studies either show this interface to have

strong elastic properties or if some discrepancy is found

between the present theory and experiment, this omission

is a likely starting point for subsequent theoretical

developments.

The dynamic and kinematic boundary conditions

at the oil-water interface remain as they were before

 see Section 6!.

Kinematic B.C.:

D 3F.

 F.-y! = � + uF. � w = 0
Dt at

�. l3!

y=F



Dynamic B.C. 's:

p + gp + z F � q! +
u

g 3.

F <, Bw 1 Bu
2

X.
C

~x

�. 14!

y=F,

I 1-F ~ Bu Bw] BU B%rP

1+F.' By BxJ By Bx
~x

x 4 '  c'! 2 � q c"! 2 = ~ s
ix

�. 15!

y=F-
l.

2 �-F,'. ! t 1 aw
! c !'

�+F. ! L B y
~x

Bw 1 Bu

g5 +
Bz c By

Bw

� q e !'
By
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The non-dimensional parameters used above are

defined analogously to those of the monolayer problem

discussed in Section 6. The only modifications required

by the additional interface are the replacement of

with M and <o, where:
3 u

a'

a K
ow

I
2

o c

and, �. 16!

o K
u oa

Q
0

~~ o

�.17!

The upper surface capillary parameter, ~ , is defined inu

0

terms of the lower fluid density as it is found that at

lowest order  i.e. biggest magnitude!, the wave behaves

as though the upper fluid weren't present. This

convention necessitates the inclusion of the factor q

in the denominator of the righthand side of equation �.11!.

The matching condition between the lower

boundary layer flow and the outer potential flow also

remains unchanged  see equations 5. 17 and 5. 18!.

We may linearize the equations above by

expanding about the mean interface levels and thus

determine the following 0 e! equations



w = F
u

St
�. 18a!

u

-p +  u F + 2 c !u u 2 Bw a
F

g S By q
�. 18b!

BG Bw

By Bx
�. 18c!

y=D

w =w =F.
u

i
�. 19a!

pu 2 Bw u 2 BwU

-p +q +e F. � q!+2[ c ! � � q c !
g 3. By By

F,
3.

a i
xx

�. 19b!

k u u  k! 2!Bu Bw !   u
 Bu Bw
By Bx q By Bx s �. 19c!

y=0

However, on reflection, it will be observed.

It is not immediately obvious from looking at

these equations that this specification of boundary

conditions differs in an important way from the previous

problem's matching and boundary conditions.
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d.. = 0, but this condition had its counterpart in theu

3. j

previous problem where we recognized that exponential

growth through the boundary layer was not compatible with

the assumed outer flow. Thus we require a condition

having to do with the horizontal velocity at y=D so as to

close the problem.

This condition is obtained from the normal

stress condition by taking the X derivative of Equation

�.18b! and noting that the X derivative of the dynamic

pressure is known within the upper boundary layer from the

linearized Navier Stokes equation. Thus:

u u 2 2
~= � � + ~ ! ~+~+0 a !a Su u2au Bu 2
ax = at �.20!

that whereas the matching condition for the monolayer

problem between the upper boundary layer flow and the

upper potential flow resulted in two equations, one for

each of the components of velocity, the present problem

has only the one kinematic condition on w, Equation �.18a!.

Furthermore, the normal stress condition at y=D, Equation

�.18b!, does not help us in its present form because the

dynamic pressure is nearly constant throughout the

boundary layer region and so it is not affected by varia-

tion in u. The tangential stress condition, Equation

�.18c!, is useful, as it allows us to determine that



and

3U   U
 3 u 3 UU 2 2

3x 3p

U

2  u
 3 w 0 F
"g s 3x3y q s �. 21!

1=m+  o+cu!
g a o

�. 22!O�!

u

K = ~ d� � v !+ � sinh dj �.23!2 10 . �-i!
Ol � � 2<v ! s U. 2

9 '00

10

00 �- 2u!
g

O E !

O ~ ! -.

We can now evaluate the various coefficients by

inserting the assumed expansions  being careful to make

the proper sign changes in the lower boundary layer! and

equating like powers of c , c . Appendix B lists the
u R

numerous equations that result. The key variables from

our standpoint are the dispersion equations and the

coefficients of the highest order rotational flow. These

determine the character of the second order flow induced

by the surface boundary layer. The dispersion equations

are found to be:



and so,

0 E:'! . Kl Klp + QKp 1

1 2 �+ i!
��  qgd l � z ! + � � ~ !

S 2 s
g

Cu
[cosh~+ s qgsinh~2dj ! �. 25!10 � � i! �- i!

2 s

00

u 1
'OO '00 = ' �. 26!

u 3
~10 10O c !: �. 27!

u i u u . �- i!
501 501 b10 d + C10 sinh~2 dO c !. �.28!

We have also made use of the following result which is

obtained from the horizontal gradient of the dynamic

pressure at the upper surface  see discussion above!:

where Kl is the wavenumber perturbation expressed in

terms of the nondimensional water boundary layer depth

9.
 c. ! . j:n deriving these equations, we have made use of

the normal stress condition and the following identities

which may be obtained from the kinematic conditions:



10

 u s
00

�. 29!

where

U

[![] = 4J +
a

s g q
� ~ 30!

�-~!
[LU M+

S

<n i s ~2 �+ Q tanh[� � i! d/ 2] !
10 00 [1 M l i! ! h � � i!

2

�. 31!

and

i �+ i!
10 ~00 ~2

� � ~ !
[ M+ �+ i! S

i s ~2 �+ Q tanh[� � i! d 2] !
00 [1 � - i! !

where

Frora the tangential stress condition and the

condition requiring continuity of horizontal velocity at

the interface, we have the following equations for the

coefficients of the highest order rotational component:
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M
u 1- x+ qa tahh ~d

�.33!
1+ qQ tanh ~2 d1- i!

and

the Weber number corresponding to

the analogous air-water monolayer

problem, i.e., m =  /c

There are a number of similarities between

these results and those obtained for the monolayer problem.

For example, the O l! dispersion equation [Eq. �.22!] is

nearly identical to Equation �.3! when the latter is

specialized for the water-air case  q-h 0! with the excep-

tion that the surface tension parameter is now composed

of the sum of the interfacial and surface parameters

 u> + u> ! instead of the single interfacial parameter,
l. u

 ~ !, found in the monolayer problem. At lowest order,
a

therefore, the motion is like that of a single inviscid
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liquid having a surface tension equal to the sum of the

two interfacial tensions and a density like that of the

underlying fluid.

Equations �.21! and �.22! show that the

higher order perturbations to the wavenumber  Kpl and Klp!

are dependent upon the coefficients of the highest order

rotational component of the boundary layer flow  i.e.,

C 1 p and C 1 p ! Analogous behavior was a 1 so f ound in theu

monolayer problem [see Equations �. 3b-d! and �. 4b-c! ! .

This linkage between the Clp's and the O c!

perturbations to the wavenumber is a general feature of

all free surface wave problems in which the vorticity is

stronger than 0 a! in the vicinity of the surface. This

may be shown as follows.

First, the vorticity may be expressed as a

function of the stream functions V and 'F as follows
u

[see also Equation �.8c!]:

- 'P +V ! = �   � 'P +'P !6 B 1 6 8
yy xx P2 yq xx

�.33!

Inserting the expansions �. 3!, �. 4!, and �. 7!, we have

the following equations for the upper and lower vorticities

{v and v respectively!:
U





Now it is generally understood that these

boundary layer vorticities play an important role in the

processes leading to the dissipation of energy in surface

waves. Xt is also commonly known that the energy

dissipation leads to complex valued perturbations of the

wavenumber  or frequency!. Phillips [66], for example,

uses the energy dissipation to calculate wave attenuation

 see page 37 of Phillips' monograph!. However, the degree

to which the dissipation of the kinetic and potential

energies is tied to the boundary layer vorticity is

generally not fully appreciated. Thus, the second

observation we shall make relates the energy dissipation

explicitly to the boundary layer vorticities. Since the

purpose of this discussion is simply to provide additional

insight on Equations �.21! and �.22!, the derivations

will be sketched rather briefly, so that we won't wander

too far from our central theme which is the exposition of

the first order properties of the oil-water system.

Landau and Lifshitz [59j show that the dot

 or scalar! product of the momentum equation and the

 vector! velocity may be put in the following form  their

Equation 16.1, page 53!:
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p jul ! + V ~ j.pu  � juj + p+ pgy! � u ~ a'!3 1 2 1 2

3u ~
a I

iK 3x
�. 36!

where u is the velocity vector;

a' = [a'. f is the viscous stress tensor;
iK

repeated indices imply summation;

and we have taken the liberty of including a body force

in the bracket on the left hand side which Landau and

Lifshitz ignored in their derivation.

The term on the right hand side of Equation

8 1 22 P!uj !dV + n ~ u 2 Plul + p+ pgy!d$ � n u a' d r 1 2
V

�.36! is the rate at which the kinetic and potential

energies of the left hand side are being dissipated into

heat. The term u a' corresponds to the work done on the

fluid by the conjunction of the velocity field and the

viscous stresses. It is commonly overlooked.

If we now integrate this equation over an

arbitrarily specified volume V, bounded by the surface

and invoke the divergence theorem for volume integrals,

we will have the following:
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�. 37!

3u. 3u .
a' = pe = p[ � + ~]

ij ij ax. 3x.
3.

�. 38}

where e.. is the rate of strain tensor, and p is the
3 !

viscosity.

We can readily show that for such an incompress-

ible fluid:

3U.

iK 3x 2 ij ij

3 l 2 3 2 2 3
[2  ! + 2  ! + 2  !3xl 3x2 3x3

2 2 2
+ el2 + el3 + e23! �.39!

where n is a unit vector, locally normal to the surface

pointing outward.

For a Newtonian, incompressible fluid, we have:



2 2 1 2
e = z + 4

12 3 Bx 3x
�. 40a!

2 2 1 3
e =  d + 4
13 2 3x3 3xl �. 40b!

2 2 Bu2 3"3
e=u!+4
23 1 Bx3 Bx2 �.40c!

V z U =  Ql~ 82 < d3!where

Thus, Equation �.39! may be written=

O'G ~
i 2 2 2 i

BU. Bu,

iK Bx l 2 3 Bx. Bx.
! 3.

3 2 3 2 Bu 2

' "Bx ' '"Bx ' '"Bx ' ' �. 41!

Now the off-diagonal rate of strain terms can be readily

evaluated in terms of the vorticity as follows:



But,
BQ Bu Bul 2 Bu2 2 Bu3 2

4 � ~+ 2  ! +2  ! +2  !Bx ~ Bx ~ Bxl Bx2 Bx
3.

-2V ~ [u x <o � � V '  u u! ]l

2
�. 42!

Bu ~

g '. = p f i v i � 2 V  ux w! + V ~ V  u ~ u! ]
K

�.43!

2u. a' = pV iui � p uxw �. 44!

Thus, Equation �.37! becomes:

Btiui dv+ n'u�I iui +P+ Pgy! ~ n-vlui d>1 B 2 l 2 2

+ y n ~ uy~ dg = -uc [~[ dv � p n ~ vlRI2 2

V

We may also show the following identity which applies to

the viscous stress term on the left hand side of Equation

�. 37!:



The right hand side of Equation �. 45! corresponds to

Lamb's 5329 equation  l2! upon noting that Lamb's unit

normal vector points into the fluid, thus changing the

sign of the last two terms. Upon cancelling like terms in

Equation �.45! we have:

l 3 2,tIuI dV + n u� p lyl + p+ pgy!l 2

V

= -y J~ ~~ av + p J n ~ uxw ct!2

V

�.46!

In the simplest terms this equation states that

the kinetic and potential energies within the volume V are

dissipated to heat only when there are regions of vorticity

within the fluid. It is apparent that in the absence of

vorticity, the work done by the viscous stresses just

balances the viscous dissipation. The vorticity thus acts

like a catalyst, in that while it doesn't dissipate energy

itself  strictly speaking!, it does create the conditions



under which the nonviscous mechanical energy terms on

the left hand side of Equation �.37! contribute to the

energy dissipation.

We can now see from Equation �.46! why the

wavenumber perturbations depend so strongly upon the

coefficients Clo and ClO. In the problem at hand, theu

assumption that the waves have a purely sinusoidal time

dependence suggests that if energy is dissipated within

the fluid, then the mean-squared wave amplitude  which is

an accurate measure of the kinetic and potential energies

of the lightly damped waves! must decrease in the direc-

tion of energy propagation. Clearly, if the dissipation

is large  implying substantial wave amplitude attenuation!,

then the imaginary wavenumber components will also be

large. From the right hand side of Equation �.46! we can

see that large dissipation corresponds to having regions

of strong mean-squared vorticity within the fluid, and

small positive, or even negative, values of the time

averaged surface integral. Since the lowest order

vorticity is linearly related to the C and. C coeffi-
u

cients [Equations �.34! and �.35!], this explains the

close relationship between the wavenumber perturbation and

these coefficients. Equation �.33! suggests that sub-

sequent terms in the wavenumber expansion will exhibit



much more complex dependencies upon the stream function

coefficients due to the increasing number of terms that

will enter into the vorticity expansion.

We also find that the wavenumber perturbations,

Equations �.23! and �.24!, depend upon the parameter

which is defined by Equation �.28!. This parameter
S

is seen to be analogous to the right hand side of the

inviscid dispersion equation for a single fluid system

having the density of the upper layer and a surface

tension equal to the air-oil surface tension. Thus  l - v !
S

and � � v ! are measures of the difference between the2

S

irrotational flow that would exist at the specified

frequency if the system were made up of a single fluid

having the properties of a very deep upper layer as com-

pared to the flow properties that actually exist. For

pure gravity waves, ~ equals unity  irrespective of
s

interfacial elasticities! and the wavenumber perturbations

rely soley on C and C
u

This behavior can be explained rather simply as

follows. In the event that u equals unity, the irrota-

tional flow would satisfy the condition of zero slip at

the oil-water interface. In this case the rotational flow

established at the interface would have the task of

satisfying the continuity of tangential stress condition



and nothing more. However, to the extent that  v is not
s

equal to unity, then the upper and lower fluids would,

except for viscosity, oscillate in such a fashion as to

create a slippage at the interface. In this case, the

interfacial boundary layer would have to provide a

perturbation to the irrotational flow that allows bath

continuity of tangential velocity and tangential stress.

Thus, regions of strong voriticity could. be formed at the

interface of two fluids even if their densities and

viscosities were equal, provided only that <o was different
s

from unity. Lamb commented on this slippage phenomena as

it applies to gravity waves in 3231 in which he noted

that for deep water waves in two superposed fluids, the

slippage condition was satisfied.

The equations as they are shown above are far

too cumbersome to provide a detailed insight on the

various dependencies. Tt is helpful, therefore, to

specialize the equations for a few limiting cases. First,

writing Kl in terms of the known forms of ClO and Clo,u

we have:



1 2 �+ i!K1 = � 2a !  qQd � � a ! + � � aa!
g

 l �  !J !
�+ i! s

a ~2 1+ Qtanh 1 � z!d 2

[ 1 � ! ~~]

�+ qQ~ taah ~ d] ! �.47!

Expanding this about. d=0, we have:

K
1

+
�- 2~ !  l- j � � 2�] !

g 2 M! g

[2 � � �> ! � N�!
2 � � i!

2 + O d2!
! M!

�. 48!

At lowest order, this is simply the monolayer equation.

Further, Kl is seen to be pure real through 0 d! if M = 0.

That is, if the interface between the two fluids has a

negligible elasticity, then no damping will occur at this

order. This has some obvious applications to the oil spill

model for it suggests that once sufficient surfactants have



-3
been extracted from the thin region, where d = 0�0 !,

then this region will no longer interact strongly with the

wave field.

Considering the other extreme, we can take d to

be large enough so that

tanh ~2d = j.. 0�- i!

 e.g., d=5!. The equation for K now becomes:

1 2Kl � 2 ! qQd�- v !
g

qQ ~! <1- ~ !l+ i 2

�+ qQ! �- M � ~ � '>  1-il

M�+ e qQ!
2

�.49!
  1 � M~2!� � i!

Here we can see that the effect of the thickness

is to both multiply the thin film monolayer behavior

[Equation �.48!] by a factor � + o> qQ! and to give rise2 s
to the two other terms in the bracket. We can readily see

that if <u is similar to unity, then these other two terms
s
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are small, and the predominant effect is to amplify the

monolayer properties.

The linear dependence upon d exhibited in the

first term in the bracket is an artifice of the analysis

to the extent that the model assumes that the upper fluid

is not thick enough to support a predominantly irrotational

core region. As d becomes substantially larger than one,

this assumptio~ becomes less and less valid; and the

necessity for including an upper region of potential flow

grows. One important effect a region of irrotational flow

in the oil would have would be to modify the dispersion

equations [�.20! to �.23!]. lt is most likely that the

present analysis is accurate only up to values of d

similar to 5 or so.

Although these equations are considerably

simplified by the assumption regarding d, it is clear that

the complex interdependencies require some concrete

examples if we are to learn anything more about these first

order properties. In particular, we require some knowledge

of the ~ and Im K ! behavior over a range of frequencies.
s

Figure 7.2 depicts <u for the three classes of oil over a
s

range of frequencies sufficient to cover the dynamically

important constituents of the surface wave field. Our

assumptions regarding the interfacial tension
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 a = 20 dynes/cm! and. the surface tension  a = 30
OW oa

dynes/cm! may be regarded as conservative insofar as

is concerned since the effect of lower tensions  the

likely prospect! would be to increase the relative

amplitude of u which would increase the frequency at
g

which the ~ curve departs significantly from unity.

Corresponding to these values of ~ , are the
s

thickness related decay lengths depicted on Figure 7.3

  m is assumed to be zero in these calcuations!. The

decay length is defined as the distance a wave must

travel in order that its amplitude be diminished by a

-l
factor e  = .368!. ln this distance the wave's

energy will have been attenuated by the factor e

 = .l35!, and so this is a convenient scale with which

to characterize the horizontal decay of the wave. This

distance is readily calculated from the formula:

�. 5O!

where K is the appropriate root of the dispersion
0

equation, equation �.20!, which has the following

dimensional form:
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 o is the wave frequency in radians per second!.

If we now consider the combined effects of

monolayer elasticity and thickness we can see that for

moderate values of m the decay lengths become much

smaller. Figure 7.4 shows X 1 for a thick oil layer

assuming m is pure real  i.e., for thick oil this implies

that the diffusion induced phase lag in the surface

concentration of surfactants is negligible! and of

value .5. Medium oil densities and viscosities are used.

Notice that for frequencies in the range of 10 � 50

radians/second, the characteristic decay length,

is in the range 50 cm to 1000 cm. The corresponding

values of the surface compressional modulus associated

with an M of .5 lie in the range of E = 300 dynes/cm

at 10 radians/second, to about E = 10 dynes/cm at a

frequency of 50 radians/second. At the lower frequencies

 i.e- 10 radians/second! such values for the elasticity

are high but even here we cannot rule them completely

implausible.

Holding M constant while varying the thickness

 a physically difficult experiment no doubt due to the
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complex 'd' dependency of N} we can see from Figure 7.5

that the thickness effect is not monotonic. Rather

the value of Im K1! reaches a peak in the vicinity of

d = 1, and then tapers rapidly to its asymptotic

value which in this case is 1.098.

Up to this point, we have implicitly assumed

that the x variations in spill thickness and elasticity

were negligible. The latter assumption can be argued.

from physical grounds as follows. First, it is reasonable

to assume that the bulk of the surfactants contributing

to the interfacial elasticity will come from the spilled

oil, at least initially. * Under these circumstances, we

might expect the distribution of surfactants to be

reasonably uniform over fairly large length scales

within the thick region of the thicker oil layer.

Since the surface elasticity is a function of surface

tension, and since the system will naturally tend to

a state in which the surface tension is uniform over

the interface, we should expect the elasticity to be

reasonably uniform over moderately large length scales.

*Over long time periods, we might speculate that biological
agents metabolizing selected petroleum hydrocarbons will
probably be the principal source of surface active
compounds.
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The principal objection to this generalization being

that spatial variations in the differential extraction

of the surfactants due to local irregularities in the

air and water flow fields may lead to spatially

heterogeneous mixtures of surfactants that exhibit

similar surface tension but dissimilar elasticities.

Nevertheless, a first approximation would be that the

interfacial elasticity is reasonably uniform.

However, in Section 3 we indicated that the

thickness of the thick larger may vary by plus or

minus a factor of two. Thus, an interesting question

with direct physical application is how does the

imaginary portion of the wavenumber perturbation vary

with depth for constant elasticities, and what effect

might this have on the present analysis. Figure 7.6

shows the variation of Im Kl! with depth for three

values of elasticity for a frequency of 30 radiansjsecond

and a medium oil. The elasticities are assumed to be

pure real, thus we ignore possible phase lags

associated with diffusion related relaxation. Notice

that for a very weak surface elasticity  E = 3 dynes/cm!,

the wavenumber perturbation is negligible, and monotonic

decreasing. However, for the two other cases studied,
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E = 30 dynes/cm, and Z = 300 dynes/'cm, the behavior is

quite interesting. For an elasticity of 30 dynes/cm

we find a very sharp peak in Im{Kl! at a dimensional!

depth of about .2 mm  for the oil and frequency specified!.

If we define amplitude and phase response functions for

the water phase in an analagous fashion to those of

Section 6 we find that at this depth, the water at the

interface has a horizontal velocity that is 2.7 times the

amplitude of the horizontal velocity just beneath the

Stokes layer. The interfacial horizontal velocity is also

found to lag its irrotational counterpoint by about

70 degrees. Thus, we find that the oil layer contributes

to a strong resonance at the oil water interface. This

in turn induces a greatly amplified vorticity which

leads to the enhanced damping.

The curve for the higher elasticity, E = 300

dynes/cm, exhibits similar features, but now the wave

frequency is too low for the system to be at resonance,

and the ocillations at the interface are greatly

attenuated. In fact, at the peak in the Im{K>! curve,

the amplitude response is found to be .25 and the phase
0response is -127 . Thus, the response is somewhat

analogous to that of a flexible but incompressible sheet

on the surface of the water  see Section 6!. However,



since the flexible sheet approximation does not model

the contribution of the oil layer to the dissipation

of wave energy, the decay coefficient for the flexible

sheet is too low. In the case of a surface elasticity

of 300 dynes/cm, and a medium oil, the error is about

a factor of five at 30 radians/second.

The implications of this depth dependence

are quite important to the problem at hand. In particular,

if the average spill depth coincides with the resonance

depth, then small variations in depth about the mean

will i~duce large variations in the local wave decay

parameter. Such a possibility was not provided for in

the initial formulation of the problem in which we

considered the principal horizontal scale to be the

wavelength. .herefore, in such regions, our present

results can only be considered as rough approximations

pointing the way for further analysis. Furthermore,

when Im Kl! » l, as in Figure 7.6, we must begin to

wonder if the cKl terms are still negligible compared

to l.

To appreciate the full magnitude of this

situation it is useful to plot the ratio of the decay

length, X , divided by the wavelength, X , against

the oil layer depth for the medium oil with an
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depth of the imaginary component of equation �. 48! to

zero and evaluating at d = 0. The resulting equation

is fourth order in the parameter M. Since H is dependent

upon the square root of the frequency, the determination

of the proper root,&, suffices to establish the critical

frequency.

This calculation has not been made, although

it would be rather straightforward. However, the

essential fact has already been established using

Figure 7.7.

The implications of this observation are

rather important if we consider a spectral desciption

of the ambient wave field and the essentially linear

characteristic of the present analysis  thus allowing

superposition! . At the up wind edge of the slick the

various spectral components of the wave field will pass

from a region of thin oil into the thick region. In

thus passing through a range of oil depths, the waves

above the cutoff frequency will, at some point, interact

vigorously with the oil. Once we pass more than a few

wavelengths into the slick, these components of the

spectrum will be nearly entirely dissipated, assuming

the present theory is at least qualitatively correct.



Meanwhile, the lower frequency components will pass only

slightly attenuated into the thick region of the spill.

Thus, if we are to gain a detailed understanding of the

spill's interaction with waves, we require a more complete

understanding of the interactions that might occur in

the edge regions. The analysis to support such an

investigation does not. appear to be a simple one,

however, and we leave it for subsequent writers.

Figure 7.8 shows the decay length, Al, for a

range of elasticities assuming a uniformly deep oil

 eq. d = S! and neglecting the edge effects  i.e. the

depth dependent resonance discussed above!. Notice that

the decay length for an elasticity of 30 dynes/cm is

shorter than that of the 300 dynes/cm case, over the

range of frequencies lying above 36 radians/second.

This behavior is analogous to that observed for the

monolayer in which it was observed. that for values of

M similar to unity the damping was a maximum. In

the present case, the higher elasticity leads to a

larger M, which has the effect of reducing the wave

damping once M is larger than l or 2.
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8. SECOND ORDER STOKES BOUNDARY LAYER FLOW

In the absence of strong secondary boundary

layer flows the order e terms in the wavenumber expansion

 see Equation 8.23 for example! play an important role in

determining the character of the second order flow beneath

an oil slick subjected to monochromatic waves. This can

best be shown from fairly general considerations of the

horizontal and vertical momentum equations.

We begin with the nondimensional horizontal and

vertical momentum equations expressed as follows:

� +u � +w = � ~+c Vu
Bu Bu Bu a~ 2 2
Bt Bx By = Bx  8. 1!

Bw Bw Bw BD 2 2� + u � +w � = -~-G! +E V w
Bt Bx By By g

 8-~!

Here we have used the characteristic wave scales in the

nondimensionalization process. For the present we shall

ignore the possible presence of an oil layer on the surface,

treating the material in the subsurface region as a homo-

geneous, incompressible, Newtonian fluid. We impose the

condition of zero normal stress at the surface y = E. The

approach will be to integrate the vertical momentum

equation and take a time average so as to establish the



value of both the time dependent and time steady pressure

beneath the surface. We shall then integrate the hori-

zontal momentum equation and take a time average.

Assuming that the vertical variation of the steady second

order velocity is much greater than the horizontal varia-

2 � 2 2 � 2
tion  B u/By » B u/Bx !, we can then establish relation-

ships for the form of Bu/By at the lower edge of the

Stokes boundary layer.

The technique used here for ordering and

evaluating the integrals follows from two papers by

Longuet-Higgins and. Stewart [62,64]. The integration of

the vertical momentum equation follows [62! and the order-

ing of the integrated horizontal momentum equation is

somewhat like the [64] paper.

Rearranging the vertical momentum equation  8.2!

and utilizing the following identity which springs from

the continuity equation,

a Bu B aw B Bu Bw

Bx Bt By Bt = Bt Bx By y 3+  y ! = � y  � + � !

Bw Bw

Bt Bt

we have:



+ {y � +w]B Bw 2

By g By Bt

+ {y B + uw! � e. V wB Bu 2 2
Bx

 8. 3!

Integrating this equation from a point y = -y*,

to the surface at y =  , we have:

p -y*! = p g! + ~  E+ y*! + {y � +w ]Bw

g Bt y*

+ { [y +uw]!-~ V wdyB BU 2 2
Bx

 8. 4!

It should be noted that this is an exact result.

The surface kinematic condition is given by:

{<+ ug
y=E

 8. 5!

Thus, we can evaluate the first bracketed term on the right

hand side of Equation  8.4! at the upper limit, y =  , as

follows
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[y +w ! =  [ + �  uE !] +   +u  !
3t x x

gE+ g + E[uE + ug ]

+ 2uE! + u
2 2

X X

� !+o�' !
l 8 2 3

232  8.6!

h ~  ! =  ! ~

2
a u " ~x! a2X 2 U-p + qp + 2  c e � qcu e !

 l~ ~ 2! YY YY
x

2
U V

2

 c e � qs s !
 l+ C !

xy
X

 8. 7!

at y=f;

The normal and tangential stress conditions at fluid

interfaces may be expressed in terms of the rate of strain

tensor components and the pressure. For two fluids, the

equations are:
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and,

�-   !
2

x

�+   !
e -qc e

x R R u u
2 2

+ 2 � ~ 2! e e � qc e

 8. 8!4E; at [y=gj;

 8. 7a!

 l-   !
2

x 2

�+ Z�!
e

�+ r !
 8.8a!

where the quantities are as defined in the discussion of

the first order problem  see page !. For the present

discussion we may specialize these equations for the air-

water case,  q=0!, although in extending the analysis to

the oil-water system we will require the full equations.

Thus,  with q=0!:



Or, carrying the expansion through 0 a !:2 .

 p+ce-2c e=ge+O m!j
2 2 3

YY x xy xx 0

y=g

 8. 7b!

 ze +2m pe = gg +Q u!]2 2 3

xy x YY s

Y= 

 8. 8b!

We may also recast the viscous stress term in Equation

 8.4! using the rate of strain components with the result.

c V w = c 3 e + c 3 e2 2 = 2 8 2 3
3x yx yy

 8.9!

sop

2 2 2 2 3V wdy = -e e -c e dy
YY 3x yx

 8. 10!

Thus, we may write Equation  8. 4! as:

p -y*! = -g ~ � 2r   e + c e +u>   + y*!2 2

xx a x xy yy

YA

2

+ � �  < ! �  y +w! +13 2 3w 2
2 2 3t

y= Y*

0

r [Y � + uwl !dy � c e3 3u 2

3x 3t YY
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2 8 3
� e dy+ Q a }
3x yx

 S. ll!

where the upper limit on the first integral on the right

hand side has been replaced with y=0 on account of the

20 a ! magnitude of the integrand in this region.

udy + u dy
3 2r 3u 3u 3u 33t+ u3 +w3 !d" 3t

2{uw � u  � u g ! � uw
x

y=-y*

 8. l2!

We can in like fashion integrate the horizontal

momentum equation, Equation  8.1!, from -y* to g. We will

subsequently specialize our choice of -y» by requiring

that it be sufficiently far from the surface so that the

first order rotational boundary layer flow will be negli-

gible. Thus, the following calculations are aimed at

determining the flow properties at the outer edge of the

Stokes boundary layer. By invoking Liebnitz's theorem

we can take the partial derivatives out of the integral

and in the process generate a number of terms whose values

are known from the boundary conditions at, y=E. For

example, the left hand side of Equation  8.1! becomes:



while the pressure term on the right, hand side provides us

with:

3 3

3x 3x
pdy +  p<�j  8. 13!

The bracketed term on the right hand side of

Equation  8.12! can be shown to be identically zero from

the surface kinematic condition, Equation  8.5!. Thus the

integrated equation can be put in the following form:

3 udy + �  u + p! dy
3 2

I:uw] + I:p$ ] + s V udy
2 2

y- y* y*

 8. 14!

This equation is exact. We may again rewrite

the viscous stress term using the rate of strain tensor

components. Thus, Equation  8. 14! may be written:

y="Y*

E
3 udy + 3 u dy = [uw]3 2 +  p-ce!+se

2 2

X xx xy

-y*



+
a 2

Bx
 -p+ c e !dy

yx
 8. 15!

or, rearranging a few terms:

a a 2
at

udy + � u dy = [uw] +
Bx

2
e

xy

y*y= Y*� y*

+
a 2

3x
 -p+ c e !dy

xy
 8.16!

Equation  8.16! states quite simply that the time rate of

change of momentum in the vertical plane plus the local

divergence of the momentum convected across the plane

equals the rate at which horizontal momentum is convected

up into the surface of the plane by the vertical velocity

at the lower edge, plus the stresses applied in the X

direction at the upper and lower edges plus the gradient

of the normal stress integrated over the face of the plane.

Our subsequent discussion will order these terms for the

monochromatic wave problem, and it will be useful to

remember this interpretation of the physical roles played



by the different terms.

Before getting into these arguments, it is

appropriate to digress at this point to comment on a

feature of one of the Longuet-Higgins and Stewart papers

 l964, pages 540-541! that might appear to be at variance

with the present analysis and the equations above.

Specifically, these authors briefly sketched some rough

arguments to justify the inclusion of an impulsive pres-

sure term at the upper surface representing the surface

tension contribution to the horizontal momentum transport.

After giving the matter some thought, it appears to me

that this technique was adopted by Longuet-Higgins and

Stewart in order to accommodate their previous development

of the pressure term in which they did not include the

surface tension explicitly in the normal stress condition.

Since we use the surface tension term explicitly, we need

not conjure up arguments at this point to account for its

absence. Thus the terms discussed by Longuet-Higgins and

Stewart are not to be found in the development.

2 2-p + c e = ao + a a2 +
xx l

 8. l7!

The integral of the last term in Equation  8.3.6!,

 -p + c e !, has the following expansion in a:2

xy



where:

ao =~ E - ~  g+y*! � re  y~! +me  y*!2 2

1 oxx g xx

+ y* � c � e dy3w 2 3

at 8x yx
 8. 18!

with a a
2

Using this expansion and passing a one period

time average over Equation  8.l6!, we have:

G
2� a 2�[uw] + c e + a o2dy

Y
* xy Bx

y* y*

a 2
u dy

Bx

+ > aaldy + O a !3 3
 8.19!

Now expand the last term by breaking the integration

into two intervals:

The last two terms in y* are included above in

part because we have not yet restricted the magnitude of

y*. Clearly, if y* = 0 a! then these terms will belong
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r
B B Ba

Bx 1 Bx 1
av dy =  x a dy + a � 1 dy

Bx

 8. 20!

where -y is a level selected so that it is independent. of
0

x and t, and just far enough beneath the surface so that

it is not uncovered by the wave  thus insuring ~y   = 0 ut !;0

and al = 0 on account of Equation  8.18!.

Ef we assume irrotational, inviscid flow, the

evaluation of the integral in Equation  8.20! would be

rather straightforward. It corresponds, in fact, to S
XX

�] of equation �! of section 2 of Longuet-Higgins and

Stewart �964!. However, the presence of the viscous

stress terms in al, coupled with both the oscillatory

behavior of the upper boundary and the singular nature of

the boundary layer make it difficult to proceed for the

case Ot » E. One possible approach would be to decompose

ol into irrotational and rotational components, evaluate

the irrotational component explicitly with a Taylor's

series about y=0, and make order of magnitude arguments
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2

8 � = Q + � � y + .. ~
3x ax ~ 3x3y

y=0 y=O

 8. 21!

We may evaluate the expansion coefficients as follows:

30l 2 36 + 2c 3 e �!  8. 22!3x 0 xxx g x 3x xx

y=0

23 al 232
~e  8. 23!
Bx xy

=l 23' 3 w�!
3x3y 3x3t

y=0

regarding the rotational contribution. Unfortunately, we

do not have the requisite 0 a! solution for the rotational

flow when a » c, and so this technique would require

further first order analysis to carry the argument through

in a rigorous fashion.

Therefore, we will restrict the problem to the

case e « c. This allows us to expand the integrand in

terms of an inner boundary layer variable expansion,

where the magnitudes of the various terms are known from

our previous discussion of the first order problem. In

this case we have:
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where we have used Equation  8.18! to evaluate aal.
2

Thus, to O u !, we have:

a vdy= [e g -v g +2@ � e �!]$3 2 a
8x 1 cr xxx g x Bx xx  8. 24!

and Equation  8. l8! becomes:

2- e +
xy a xxx

2 2

3x
 u -a a !dy = juw] +

2

y% Y*

+ 2c e �!  
2 a

g X Bx xx  8.25!

This equation may be viewed as specifying the

value of e at y=-y* since many of the other terms are
xy

known explicitly as boundary conditions or as results of

the first order analysis. The only exception to this rule

being the integral on the left hand side which we shall

show to be small compared to the rest provided the wave is

being strongly damped, and provided -y* is chosen so as to

be in the vicinity of the lower edge of the Stokes layer.

Physically, the equation will tell us that in

the absence of second order rotational flows not hypothesized
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a net second order momentum to the fluid lying in the

region of the wave crests. Momentum must be drawn from

the region as rapidly as it is created, and the mechanism

established for this purpose is the steady tangential

stress at y=-y*. Since the horizontal scales may be

presumed to be large compared to the vertical scales, a

reasonable approximation to this steady stress is:

2 Bu
E

By

2�
c e

xy
 8. 26!

Y= Y*y*

To show the relative magnitudes of the terms in

equation  8.25!, assume that the free surface elevation

and wave number are given by:

= RR{g  e !, and  8. 27}

K = l+ cK1+ c K2+  8. 28!

where K is non-zero only for the monolayer or oil layer
1

case.

at this point, the gradient of the first order, x directed

2
normal stress, [-p + e e in Equation  8.16!], imparts

xx



RR  -iKS! g e g*e * o~j-
G xxx 0 0 0

1 pj  i ~w 3~ gm K !ei K-K*!x
0 0 1

 8. 29!

E E = � w � RR  iK}E e F e x!
1 iKx *- iK*

g x g 2 0 0

1 g     I g ~ K ! i KK*!x  8. 30!

where   is an arbitrary factor O l! of no concern;

the superscript * indicates complex conjugates; and

Then the terms w  xxx< and � w <   may be
g xxx g X

evaluated as follows:
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a

 u � a'a ! = u'
2

3 x

w � 2E g e � 2c e +
x xy

y=g
3 x

r o uw dy � s' e dy
3x yx

r auw dy e dy
3x ax

 8.32}

Thus the near-surface pressure gradient terms can contribute

a term O a c} to the right hand side of equation �.25!

when the waves are strongly damped, as in the monolayer

case.

The uw term in equation  8.25! is easily

evaluated by noting that in the irrotational core region

 i.e., at and below y = - y*!, the 0 u! wave velocity

components will be exactly 90 degrees out of phase since

they spring from the x and y derivatives of exp.

 iKx + Ky!. Thus their time average at the depth � y"

will be identically zero.

The remaining terms require a more detailed

examination. The integrand of the left hand term of

equation  8.25! may be manipulated as follows:
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Recall that we are here considering only wave related

phenomena. Thus u and w are assumed to be directly

associated with the first order wave velocities. En this

case, only in a region of 0 c! will u differ significantly

from w', and only in this region will uw be nonzero.

Further, these quantities will depend upon x much like

-gcx
the surface pressure terms,  i.e., like e , see

equation  8.29!!. So taking the 'x' derivative of these

terms will introduce additional factors of O c!. This

implies that:

u � w dy=O m a !  8. 33!

0 0r a2
uw dy dy' = O{u c y*!

3k

 8. 34!

y* y>

We have assumed that the wave amplitude is small compared

to c  u « z!, so y" may be chosen to be 0 s!. Thus

the second term will be negligible compared to the first,

and both will be small compared to the surface pressure

term.

0

Consider first. the terms 3/Bx  u - w ! and y* 3/3x uw!dy.



The remaining terms in the integrand, equation

 8. 32}, are:

3

e dy
xy

y*

2c,e+c e
yy x xy

These terms are more difficult to order as they are

intimately related to the properties of the second

order flow. In particular, if 3 u/3x i~ large there would

be a substantial transport of horizontal momentum by

viscous stresses, and our ordering techniques collapse.

It seems unlikely, however, that this could ever be the

case physically, for it would suggest vigorous motions

within the spill region, and there is little evidence

that would support such an idea  except perhaps in

isolated regions near a leading or trailing edge!. In

fact, if our observations regarding the constancy of

the area of the thick region of an oil spill suggest

anything, they suggest that 3ufdx and 3 uP x are

negligible over most of the region. Thus we shall

make the assumption that 3 u/3x is negligible  say

0  a'! or smaller! in the near surface region  i. e.

from y =   to y = � y*!. This doesn't imply that 3ufdx



is negligible everywhere, however, because terms like

B u/Bx are essential in establishing the secondary

flow beneath the Stokes layer.

With this assumption regarding Bu/Bx we also

assume Bw/By is small. This allows us to determine that.

w and its 'x' derivatives are small everywhere in the

Stokes layer because at y = 0, we have the Taylor's

expansion of the surface kinematic condition, equation

 8.5!, to tell us that

 u<! = O u'~! .  8. 35!
Bx

Since Bw/By is small, w at a point 0 c! beneath the

surface is only little changed from w at y = 0, and so

it too is small. With these assumptions we find:

2~ e dy=o u c y!
B yy

 8. 36}

B

E g e
2

x xy
dy = 0 a~c y*}.  8.37!
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0

C
2 e dy=

y V

0 3 Bw
c � u g! � u  y' !

Bx 3x

0
3w

dy dy' = O a c "y*!
Bx

 8. 38!

yl

Thus we have finally:

3U
2

3y
y*

2
c e

xy

� 0 c Zm  Kl} e g~ + 3v +l z -sex !
2 I g g

0  a'c'!  8. 39!

where we have used equations  8.29! -  8.3G! in the last

term on the right.

Equation  8.8b! provides us with the time

averaged rate of strain term at the surface, whence:
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c e = gE � 2E g exy - '<s 'x yy  8. 40!

The last term in the bracket is 0  a c ! so equation  8.39!.

becomes:

E
2

By y Y*
 8. 39a!

a ~ lm  K !e pv! + 3 oJ +O e c !1 -S~x I 1 2 2

2

This equation has the rather novel parameter

4 E , which is the stress applied to the surface by a
s

spatially varying steady accumulation of surfactants

on the surface. In the crude model we have adopted

here, there is no good way of establishing what this

parameter is because we have neglected diffusion and

extraction of the surfactants. In fact, in the simple

strain model used in Section 6, we find that the

surfactant concentration either oscillates sinusoidally

or grows linearly with time.

In an actual oil spill, we would expect

regions of higher "pressure", i.e. higher surface



p  y! = p  D+ 4 ! + +  D+   - y! +

32
y � +

a Bu

y � + uw dy � c e
u

ax L at

D+F
u

u
e dy

ax

 8. 4l!

concentrations of surfactants, to be regions where

dillusion into the two adjoining bulk phases is greatly

enhanced. Thus, localized accumulations of surfactants

caused by convergence of the surface velocity would

be relaxed by the diffusional transfer. Since the

time scale would be given by  Bu/Bx! , where u and x

are dimensional, and since 3u/3x is presumed to be

small, the relaxation effect could be sufficient to

make this contribution negligible. But this term is

more complicated than just this, so we shall come back

to it later in the next section.

We may extend the analysis to the oil-water

system rather simply. Utilizing the same integration

techniques, we have the following equation for the

pressure within the oil layer  i.e.     y < D +   !:u



defines the oil-water in ter f ace;

D +   defines the air-oil interface;

is now calculated using the oil layer's

where

density and viscosity; and

l a'
= � �  g'! + O a'!.

2 3t

9w

W
2

Bt

Likewise, the horizontal momentum equation may be

integrated over the oil layer to yield:

D+g

z uuzdy = 6 ze
3

D+6u

u dy +
at

D+ 

 p + ~ d ! dy
Bx

 8. 42!

D+<u
pu pu

- �  D! ~ +
u

+

Bx ax

� u
e

xy

p  2 2!  8. 43!

As in the analysis above, we again find that the time

averaged tangential stress term is balanced by the time

averaged integrals of the first order pressure gradient

terms in the vicinity of the oscillating interface.



-178-

The sign is reversed for the term springing from the

integration at the lower boundary because the integration

is carried out from the interface upwards. Thus

+ K K +
u . u

XKX g
e

g � u
e

p~

D

q xxx z
uk-guk"g'u '

x u
 8. 44!

where

p  D! = - � 0 + ~  D + g ! + O a~'! =
u XX g u

q

p o! + O ae !; and

non-zero difference being of order
u Thus gu- < is small and;

u

3QT
u

xy
+O ac!  8. 45!

We may now use equation  8.4l! with y taken as

F. to determine the value of p on the upper side of the

interface. This we may then use in the interfacial normal

where the term ~ is defined using the lower fluidu

density, thus the requirement for the q in the denominator.

Tn Section 7 we pointed out that the upper

and lower interface oscillated nearly in unison, the first



stress condition, equation  8. 7}, to establish the 0 a!

pressure to be used in equation  8.22}. Thus,

U

q < + v  g �   ! +
u g uq xxx g x x

0 uc !  8. 46!

The tangential stress condition to be applied

at the oil water interface is obtained from  8.8!,

whence:

U2 u
qe + qc

s xy  8. 47!

y=D+F

The oil-air interface is assumed to be non-elastic,

thus:

= O a c !  8. 48!

y=D+$

3Gl

a

c e
R

xy

u2 u
e

xy

<e + qE: e
u2 -u

S xy



Bu
2

3y

qF, + � a c am Z !e  u! + 3 u! +~ !!l -Bcx i u
'S l g 0

+ O  x c !  8. 49!

which should be compared with  8.39a!. Thus, the effect

of this oil layer is negligible under the assumptions

of this analysis, which are principally that Bu/Bx be

small, O a ! say, and the e « c.

Zt is also possible to derive the same results

from an assumptotic power series expansion for the

time steady second order stream function. For the air
water case  i.e., the monolayer problem! the analysis

proceeds from an expansion of the form:

'P = BR{ $ +cQ +.. ! +

1-Bcx+ 
l+..g e + 'P2  x,y,t!  8. 50!

where the subscripted indices now indicate the order of

a and c  whereas in previous sections they indicated the

order of c and c !;
u

We may now insert the above results in equation  8.25!,

through out the terms we know to be small, and



� �-i! y/~2
11 + blly + Cll and  8. 52!

� �-i! y!~2
~12 12 12 12 +

1

2
a10y e  8. 53!

�-i!
-ZV 1 . * y

~20 � R iall Clle 2

2 W2
 .8. 54!

-1V 1 -gEx ~~ ~ z-~2y
e

2
2 I C11I e +

 j.� i! � �- i! y//2

iRg alo  -Cll + 12}
W2

{ l+i! � �+i! y/W2
Cll  Cl> + a>0y! e

D2
 8. 55!

Here the forms of equation  8.51! through  8.53! are

determined from Section 6. Inserting the assumed.

expansions into the vorticity equation �.9!,- we

find the following governing equations for the first

two terms in the steady second order expansion:
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The boundary conditions are obtained from equations

 8.5}, $8.7b} and {8.8b!. The functions $2l and $20 are

obtained by simply integrating  8.54! and  8.55} subject

to the boundary condition. Prior to incorporating

the boundary condition, f20 is found to be:

l *  l- . !  l j.! y/~2
~20 � RR al0 Clle

2 J2

1 g l
6

20y + 20y 20y + d20
2

 8. 56!

For our discussion the critical integration constant is

b , because this constant determines the value of Bu/By

at the outer edge of the Stokes region. This constant

is determined from equation  8.8b! which provides the

following condition on f20 at y = 0.20yy

B'u 1 II Bw
0+ 9�! e + 4g

By r. 20 By
 8. 57!

We argued in Section 6 that 4 jc. was typically O l! .

Thus we might xeasonably consider the right hand side

of  8.57!,   , as being O o'!, and in this case we

have:
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 l- i!.
*

� Rk   C le
2 j2

 8. 58!

~ ! �+i J
Ra alo Clle

2 /2
20

Now the surface kinematic condition can be used to

establish the identity g = - a 0, being careful to10'

remember that the inner variable is positive downwards

 so w = + f !. Thus the bracketed terms cancel and we
x

are left with

 8. 59!b20 = 0

Thus the lowest order steady flow does not contribute

to the shear stress at the outer edge of the Stokes layer.

Similar calculations have also been carried out

for equation  8. 55!. However, the equations become rather

long and involved, and the previous discussion leading

to  9.39a! serves just as well to explain the physical

mechanisms involved. Moreover, the answer is the same,

and much more easily obtained in the previous

formulation.



Since the mathematical arguments have been

rather complicated in this section, it is useful here to

summarize the results and comment on their possible

importance. Qf greatest importance is the observation

that the assymptotic behavior of the steady Stoke's

boundary layer flow is characterized by the formation

of a steady velocity shear. This shear is related at

lowest order to the 0 c! decay properties of the free

surface. We assumed an exponentially decaying wave in

equation  8.27! and this leads to the exponential form

exhibited in equations  8.39! and  8.39a!. It is

possible to envisage other forms for the free surface

profile that would lead to slightly different 'x'

dependency for the velocity shear. We mentioned that

we did not, have a very good model of the  possible!

steady shear stress induced by the compaction of the

surfactants on the interface. Thus the term Z  in

 8.39a! is mostly to remind us that the problem may be

more complicated than we have assumed up to this point.

We have shown that the oil layer and the monolayer

will behave similarly, the only difference being the

3. uuse of the terms u> + ~ in place of v {as we could
0 0 0

have anticipated from Section 7!.



The restrictions on the analysis are of two

forms. One requires g « c, and. this is indeed a. severe

constraint with respect to application of the results to

the open sea. This assumption was invoked at equation

 8. 20! and a useful next step would be to generalize

the arguments of equations  8.2l! to  8.24! to accomodate

c and a » c. This may not be as difficult as it

first seems, although it would seem unwise to simpjy

assume that the result will follow.

The other restriction was that. Bu/3x be small

within the Stoke's boundary layer region. This might

serve as a boundary condition on the outer flow and so be

satisifed automatically. However, it would be most

helpful to have more detailed observations from field

experiments in order to get some idea of the possible

convergence or divergence of the flow field at the

interface. Radioactivity labeled surfactants would seem

to have considerable utility in this regard, although

there may well be environmental problems associated with

the release of such compounds that I have not considered.



9. APPLICATIONS, RECOMMENDATIONS FOR
FURTHER STUDY AND CONCLUS ZONS

Our principal concern in the sections above

has been to provide the reader with a reasonably

comprehensive discussion of those features of an oil spill

that appear to be of importance in the first order oil-

wave interactions. We have attempted to document the

various roles played by viscosity, frequency and the

interfacial elasticity. We have also examined the

characteristics of the second order steady flow within

the Stokes boundary layer. We have not attempted to carry

the problen beyond this point because of the multitude

of uncertainities that beset our knowledge of the

important physical properties of the oil-water system.

One of the key points that remains to be

analyzed and one of the reasons for undertaking this

work in the first place is what is the nature of wave-

induced transport of the oil? Xt seems quite reasonable

to expect that this mass transport will be determined

by the secondary boundary layer that would be formed

beneath the Stokes region. Stuart �6!, for example,

speculated on the nature of such a secondary surface

boundary layer for ordinary water waves.

In our problem, it would. seem that the near
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surface boundary conditions to be applied to such a

secondary flow would involve either a horizontal

velocity or a horizontal velocity gradient, and a

horizontal velocity shear whose magnitude could be

determined from a knowledge of the local wave amplitude

and decay length  e.g., see equation 8.39!. Unfortunately,

our discussion regarding the sensitivity of the decay

length to small perturbations in oil thickness and

monolayer elasticity would make it seem that in the

absence of further data on actual oil spill behavior

almost any sort of velocity shear might be hypothesized.

Zt must also be remembered that for the results of

Section 8 to apply, it is essential that the value of

BU be kept reasonably small in the vicinity of the Stokes

boundary layer least the outer flow begin to interact

with the inner flow, thereby rendering the velocity

shear boundary condition of Section 8 inapplicable.

If through experiment or analysis the

character of these boundary conditions are determined,

then a most appropriate mathematical technique for

calculating the secondary flow is the Wiener-Hopf

method as discussed. by Carrier, et al  L966, pg. 376-382!.

An important research priority would therefore

appear to be to establish some quantitative idea of
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the steady flow properties of an ail spill. Is the spill

really composed of many small patches? Is there a

substantial convergence of oil flow at the interface

 i.e., is > large!? Does the thickness vary widely,3u

Bx

and are there preculiar thickness distributions at the

windward edge of the oil slick suggesting the presence of

the depth induced resonance discussed in Section 7?

Additionally, we require a much more comprehensive

understanding of the adsorption characteristics of

surfactants in real oils. What are the Ep s, g's and

6's discussed in 'Section 2, and. how do they vary with

time as the spill weathers?

Finally we require experimental verification

of the formulae of Section 7. This may require the

extension of the theory to include soluble surfactants,

as these might be the rule rather than the exception

for oil-water systems. Of course, the critical parameter

with respect to the solubility of a surfactant is the

product 96 of Section 2, and this can be made as small

as we wish by increasing the frequency. Thus, the

analysis of Section 7 can be applied directly provided

only that the frequency be high enough.

Prior to undertaking the analysis reported

on above, the author performed some simple calculations



equating the momentum lost by a decaying wave to the

momentum perturbation induced by a flat plate steadily

translating. This calculation revealed that the plate

velocity should equal the phase velocity of the wave

times the wave slope to the 4/3's power times a constant

0 l}. It was anticipated that the analysis above would

provide a more substantial means of calculating this

velocity. As we have seen, the problem is actually much

to complicated to allow us to make the transition from

our present, understanding of the wave-oil interaction

to the secondary boundary layer in the absence of

additional experimental information. The problem is an

interesting one, however, and it may lead to ideas that

might prove of use in mary related fields. It is my

hope that some of these problems miql t be studied in

the near future, and a comprehensive model constructed

around the outlines of this paper.
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These Euncions are:

Case l

p- tl, l ~  = 0, i,. I = 0, 1, 2, ...

except when used as a subscript, i=SQRT -1!!
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The kinematic matching conditions require the

velocity to vary continuously as we pass from the inner

to the outer regions. These conditions are stated in

 ~-~>
g ~z.-+ p! = Q;,' + ~;- $ t c. ~

  -"0

'!



-A3�

the text as equations-5.17 and 5.18. These equations are

evaluated as follows.

5.lj  horizontal velocit !

<g[g w 6 A�+ 6"Q�-g-LIGULA,~WE 4, 'gggg +

Case 1:

- o

The equations for the lower region n>ay be obtained by

intcrch ~ngir.,~ Lbe su[>crs< ript < d indi res
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Appendix B: Hatching and Boundary

Condition Expansions for the Oil Spill Problem

Functional Forms in Stream Function Ex ansion �.3 6 7.4!

O, 1, Z~

Potential Function Ex ansions  Equations 7.5 and 7.6!

The differences between this problem and the mono-

layer problem spring chiefly from the finite depth of the

upper layer. This leads to the use of the hyperbolic

functional forms for the stream function expansion in

the upper layer. The pertinent dynamic conditions are

discussed in the text. The condition of zero tangential

stress and zero elasticity at the oil-air interface leads

tu the requirement that g..= Q . This simplifies the
~ !

kinematic conditions considerably. They are developed

as follows.



U er Sur face Kinematic Condition �. 18 a!

a.', i b

lk

sOb, 8.

a,', + b�L = $ � K�h.

Interfactial Kinematic Condition �.19 a!

ll
a

Os

� c, ig, �= '

OV, 0-<lg =-a� c IL-c�= f,-N;  +0,

boundary condition at the air-oil interface. The

Expanding �.21! in terms of the upper stream

function, we find the following equations for the

coefficients. This corresponds to the normal stress
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derivation is discussed in the text  pages 115-120.!

;b - o

These results may be coupled with those springing

from the continuity of horizontal velocity condition at

the oil-water interface to provide equations for the C;�.

coefficients. The linearized horizontal velocity condi-

tions are:

b,

Vz

+  E!

y= k.
m~F + ~ e! !w ~<F

~ xxx

II= 0



Whence:

o

The normal stress condition at the interface has

the following expansion:

-i A, + gM~ , ~ Td~ t-g! f

-~,  s

3L
� "~re +

The matching conditions in the lower  water!

layer are identical to those developed for the monolayer

problem and the reader is referred to Appendix A and

Sections 5 and 6 of the text.




